Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

One-Step Hot Formamide Extraction Of Rna From Saccharomyces Cerevisiae, Daniel Shedlovskiy, Natalia Shcherbik, Dimitri G Pestov Dec 2017

One-Step Hot Formamide Extraction Of Rna From Saccharomyces Cerevisiae, Daniel Shedlovskiy, Natalia Shcherbik, Dimitri G Pestov

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Current methods for isolating RNA from budding yeast require lengthy and laborious steps such as freezing and heating with phenol, homogenization with glass beads, or enzymatic digestion of the cell wall. Here, extraction with a solution of formamide and EDTA was adapted to isolate RNA from whole yeast cells through a rapid and easily scalable procedure that does not require mechanical cell lysis, phenol, or enzymes. RNA extracted with formamide-EDTA can be directly loaded on gels for electrophoretic analysis without alcohol precipitation. A simplified protocol for downstream DNase treatment and reverse transcription reaction is also included. The formamide-EDTA extraction of …


High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao Nov 2017

High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao

School of Medical Diagnostics & Translational Sciences Faculty Publications

We have developed a novel method that enables global subtelomere and haplotype-resolved analysis of telomere lengths at the single-molecule level. An in vitro CRISPR/Cas9 RNA-directed nickase system directs the specific labeling of human (TTAGGG) n DNA tracts in genomes that have also been barcoded using a separate nickase enzyme that recognizes a 7bp motif genome-wide. High-throughput imaging and analysis of large DNA single molecules from genomes labeled in this fashion using a nanochannel array system permits mapping through subtelomere repeat element (SRE) regions to unique chromosomal DNA while simultaneously measuring the (TTAGGG) n tract length at the end of each …


Protein-Protein Interactions Of Bacterial Topoisomerase I, Srikanth Banda Jun 2017

Protein-Protein Interactions Of Bacterial Topoisomerase I, Srikanth Banda

FIU Electronic Theses and Dissertations

Protein-protein interactions (PPIs) are essential features of cellular processes including DNA replication, transcription, translation, recombination, and repair. In my study, the protein interactions of bacterial DNA topoisomerase I, an essential enzyme, were investigated. The topoisomerase I in bacteria relaxes excess negative supercoiling on DNA and maintains genomic stability. Investigating the PPI network of DNA topoisomerase I can further our understanding of the various functional roles of this enzyme. My study is focused on topoisomerase I of Escherichia coli and Mycobacterium smegmatis. Firstly, we have explored the biochemical mechanisms for an interaction between RNA Polymerase, and topoisomerase I in E. …


Biochemical Characterization Of Arsi: A Novel C-As Lyase For Degradation Of Environmental Organoarsenicals, Shashank Suryakant Pawitwar Jun 2017

Biochemical Characterization Of Arsi: A Novel C-As Lyase For Degradation Of Environmental Organoarsenicals, Shashank Suryakant Pawitwar

FIU Electronic Theses and Dissertations

Organoarsenicals such as methylarsenical methylarsenate (MAs(V)) and aromatic arsenicals including roxarsone (4-hydroxy-3-nitrophenylarsenate or Rox(V)) have been extensively used as an herbicide and growth enhancers in animal husbandry, respectively. They undergo environmental degradation to more toxic inorganic arsenite (As(III)) that contaminates crops and drinking water. We previously identified a bacterial gene (arsI) responsible for aerobic MAs(III) demethylation. The gene product, ArsI, is a Fe(II)-dependent extradiol dioxygenase that cleaves the carbon-arsenic (C-As) bond in MAs(III) and trivalent aromatic arsenicals. The objective of this study was to elucidate the ArsI mechanism. Using isothermal titration calorimetry, we determined the dissociation constants (Kd) and ligand-to-protein …


Discovering The Secrets Of Biology As Told By A Fruit Fly, Sonia Hall Jan 2017

Discovering The Secrets Of Biology As Told By A Fruit Fly, Sonia Hall

Science and Engineering Saturday Seminars

No abstract provided.


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) …


Hyper-Activation Of Pp60(Src) Limits Nitric Oxide Signaling By Increasing Asymmetric Dimethylarginine Levels During Acute Lung Injury, Sanjiv Kumar, Xutong Sun, Satish Kumar Noonepalle, Qing Lu, Evgeny Zemskov, Ting Wang, Saurabh Aggarwal, Christine Gross, Shruti Sharma, Ankit A. Sesai, John D. Catravas Jan 2017

Hyper-Activation Of Pp60(Src) Limits Nitric Oxide Signaling By Increasing Asymmetric Dimethylarginine Levels During Acute Lung Injury, Sanjiv Kumar, Xutong Sun, Satish Kumar Noonepalle, Qing Lu, Evgeny Zemskov, Ting Wang, Saurabh Aggarwal, Christine Gross, Shruti Sharma, Ankit A. Sesai, John D. Catravas

Bioelectrics Publications

The molecular mechanisms by which the endothelial barrier becomes compromised during lipopolysaccharide (LPS) mediated acute lung injury (ALI) are still unresolved. We have previously reported that the disruption of the endothelial barrier is due, at least in part, to the uncoupling of endothelial nitric oxide synthase (eNOS) and increased peroxynitrite-mediated nitration of RhoA. The purpose of this study was to elucidate the molecular mechanisms by which LPS induces eNOS uncoupling during ALI. Exposure of pulmonary endothelial cells (PAEC) to LPS increased pp60Src activity and this correlated with an increase in nitric oxide (NO) production, but also an increase in …


Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto Jan 2017

Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto

Biology Faculty Publications

The embryonic chick has long been a favorite model system for in vivo studies of vertebrate development. However, a major technical limitation of the chick embryo has been the lack of efficient loss-of-function approaches for analyses of gene functions. Here, we describe a methodology in which a transgene encoding artificial microRNA sequences is introduced into embryonic chick retinal cells by in ovo electroporation and integrated into the genome using the Tol2 transposon system. We show that this methodology can induce potent and stable suppression of gene expression. This technique therefore provides a rapid and robust loss-of-function approach for studies of …


Annotation And Identification Of Several Glycerolipid Metabolic Related Ortholog Genes; Mrub_0437, Mrub_1813 And Mrub_2759 In The Organism Meithermus Ruber And Their Predicted Respective Orthologs B3926, B4042 And Bo514 Found In E.Coli., Abdul Rahman Abdul Kader, Dr. Lori R. Scott Jan 2017

Annotation And Identification Of Several Glycerolipid Metabolic Related Ortholog Genes; Mrub_0437, Mrub_1813 And Mrub_2759 In The Organism Meithermus Ruber And Their Predicted Respective Orthologs B3926, B4042 And Bo514 Found In E.Coli., Abdul Rahman Abdul Kader, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

We predict Mrub_0437 encodes the enzyme glycerol kinase (DNA coordinates [417621..419183), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of glycerol to sn-Glycerol-3-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b3926.

We predict Mrub_1813 encodes the enzyme diacylglycerol kinase (DNA coordinates [1864659..1865063), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of 1,2-diacyl-sn-glycerol to 1,2-diacyl-sn-glycerol 3-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b4042.

We predict Mrub_2759 encodes the enzyme glycerol kinase (DNA coordinates [2799712..2800665), which is an intermediary …


Tissue Specific Microenvironments: A Key Tool For Tissue Engineering And Regenerative Medicine, Patrick C. Sachs, Peter A. Mollica, Robert D. Bruno Jan 2017

Tissue Specific Microenvironments: A Key Tool For Tissue Engineering And Regenerative Medicine, Patrick C. Sachs, Peter A. Mollica, Robert D. Bruno

School of Medical Diagnostics & Translational Sciences Faculty Publications

The accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination. Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases such as cardiovascular disease, neurodegeneration, cancer, and ageing. Here we review the historical perspectives on the microenvironment, and how it has directed current explorations in tissue engineering. By thoroughly understanding the role of the microenvironment, we can begin to correctly …