Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Molecular Biology

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells Dec 2020

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells

Honors Program Theses and Projects

Doxorubicin is a successful anticancer drug approved for use in the 1970s and is considered to be one of the most effective cancer treatment methods today. Although Doxorubicin has positive survival statistics it has very negative side effects in many cases. Bleeding from the soles of the palms and feet, along with excruciating pain is often exhibited through the administration of this drug. Based on the preliminary findings utilizing optical tweezers we anticipate that this study will provide critical information about the drug binding mechanism. Single molecule biophysics techniques have provided useful insight into the DNA-binding mechanisms of small molecules. …


Rna Structure And Function: Biological Relevance In Neurodegenerative And Infectious Disease Pathogenesis, Joshua Imperatore Dec 2020

Rna Structure And Function: Biological Relevance In Neurodegenerative And Infectious Disease Pathogenesis, Joshua Imperatore

Electronic Theses and Dissertations

The studies outlined in this dissertation encompass a broad focus, relating to the pathogenesis of neurological disorders such as Alzheimer’s disease, fragile X syndrome, and amyotrophic lateral sclerosis, as well as a novel infectious disease, COVID-19. However, all four studies detailed within this dissertation contain similar elements, namely, the coordinated role of RNA structure and function in essential molecular mechanisms. The results of these investigations allow us to speculate on various disease- related mechanisms, including dysregulated microRNA processing pathways, nucleocytoplasmic shuttling via distinct RNA-protein interactions, and fine-tuned molecular switches controlling genomic dimerization and viral hijacking of host cellular microRNAs. Taken …


Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace Dec 2020

Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace

Electronic Theses and Dissertations

Influenza virus, colloquially known as the flu, is an acute respiratory disease that infects several millions of individuals each year in the U.S. and kills tens of thousands of those infected. Yearly viral vaccines are widely available, however, due to the virus’s high mutation rate, their efficacy varies greatly. Due to the variability in vaccine efficiency against seasonal influenza, and the potential for even more pathogenic versions of influenza to emerge at any time, there is a high demand for a universal treatment option.

Influenza virus hijacks a variety of host cell components in order to replicate. The glycoprotein hemagglutinin …


Ionic Mechanism Of Lysosomal Function And Cell Metabolism, Jian Xiong Dec 2020

Ionic Mechanism Of Lysosomal Function And Cell Metabolism, Jian Xiong

Dissertations & Theses (Open Access)

Two Pore Channels (TPCs) are endolysosomal ion channels that are permeable to sodium and calcium. Defects in TPCs have been implicated to impair vesicle trafficking, autophagy and cell metabolism control; however, the detailed mechanism remains largely unknown. In this study, I show that TPCs are critical for appropriate cargo delivery to the lysosomes and deletion of either TPC1 or TPC2 leads to delayed clearance of autophagosomes, resulting in enlarged lysosomes and accumulated contents inside the lysosomes. Cells with both TPC deleted also exhibit 50% reduction in lysosomal amino acids under normal culture conditions, leading to reduced homeostatic mTORC1 activation.

Glutamine …


Interactions Of The Nlrp3 Inflammasome Complex, Nyasha Makoni Nov 2020

Interactions Of The Nlrp3 Inflammasome Complex, Nyasha Makoni

Dissertations

The innate immune system is the first line of defense in response to invasion by pathogens. One of the major pathways in the innate immune system involves a three-protein complex known as the NLRP3 inflammasome. This complex comprises of NLRP3, ASC, and procaspase-1. In response to stimuli, the inflammasome assembles to activate caspase-1 which subsequently facilitates production of interleukin-1β (IL-1β), an inflammatory cytokine. The NLRP3 inflammasome has been implicated in a variety of inflammatory disorders including Alzheimer’s disease (AD). Amyloid beta (Aβ) is the protein that causes AD and Aβ deposits in the brain activate microglia resulting in chronic inflammation. …


Retrieving Functional Pathways Of Biomolecules From Single-Particle Snapshots, Ali Dashti, Ghoncheh Mashayekhi, Mrinal Shekhar, Danya Ben Hail, Salah Salah, Peter Schwander, Amedee Des Georges, Abhishek Singharoy, Joachim Frank, Abbas Ourmazd Sep 2020

Retrieving Functional Pathways Of Biomolecules From Single-Particle Snapshots, Ali Dashti, Ghoncheh Mashayekhi, Mrinal Shekhar, Danya Ben Hail, Salah Salah, Peter Schwander, Amedee Des Georges, Abhishek Singharoy, Joachim Frank, Abbas Ourmazd

Publications and Research

A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the …


Triclosan Disrupts Immune Cell Function By Depressing Ca2+ Influx Via Acidification Of The Cytoplasm, Suraj Sangroula Aug 2020

Triclosan Disrupts Immune Cell Function By Depressing Ca2+ Influx Via Acidification Of The Cytoplasm, Suraj Sangroula

Electronic Theses and Dissertations

Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits …


Analysis Of Biofilm Remediation Capacity For Octenyl Succinic Anhydride (Osa), A Bioactive Food Starch Modifier Compound, Matthew R. Borglin Jun 2020

Analysis Of Biofilm Remediation Capacity For Octenyl Succinic Anhydride (Osa), A Bioactive Food Starch Modifier Compound, Matthew R. Borglin

Master's Theses

Matthew R. Borglin

This thesis demonstrates efficacy of Octenyl Succinic Anhydride (OSA), as a biofilm sanitizer. Biofilms allow bacteria to adhere to solid surfaces with the use of excreted polymeric compounds. For example, surfaces found in food production or processing facilities such as the interior of a raw milk holding tank, are some of the most susceptible to biofilm contamination. When present, biofilms can cause a variety of negative effects, which include; reduction of product shelf life, corrosion, and outbreaks of foodborne illnesses. The close association of biofilms with the majority of foodborne illness cases led the US Environmental Protection …


Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent May 2020

Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent

Electronic Theses and Dissertations

The influenza viral membrane protein hemagglutinin (HA) forms dense nanoscale clusters on host cell plasma membranes (PM), but the mechanisms that direct HA clustering are not well understood. Previous studies have observed HA associated with actin rich regions of the PM, but there are no known direct interactions between HA and actin. Phosphatidylinositol 4,5-biphosphate (PIP2) is a signaling lipid in the PM which can regulate the actin cytoskeleton, and actin comets initiated by PIP2 are known to be exploited by HA to reach the PM of infected cells. PIP2 is also used by other viruses, such as HIV and Ebola, …


The Role Of Heat Shock Protein 90 In The Keap1/Nrf2 Mediated Oxidative-Stress Response, Zheng Song Jan 2020

The Role Of Heat Shock Protein 90 In The Keap1/Nrf2 Mediated Oxidative-Stress Response, Zheng Song

Electronic Thesis and Dissertation Repository

Oxidative and proteotoxic stress are common hallmarks of Neurodegenerative diseases (NDs). Cellular proteostasis is maintained through Heat shock protein (Hsp) 90 and Stress-inducible protein 1 (STIP1) modulating the stability of their substrates (clients). Hsp90/heat shock factor (HSF)1 pathway activation attenuates proteotoxicity. Meanwhile, activating the Kelch-like ECH associated protein 1 (Keap1)/ nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway combats oxidative stress. Numerous studies attempted to individually manipulate the expression of Hsp90 or Nrf2 to treat NDs.

Novel interactions of Hsp90 with Nrf2 and Keap1 were discovered via yeast-2-hybrid screening (unpublished data). We analyzed their interactions through NMR spectroscopy, ITC, protein-binding assay, …


Bubble Lab Exercise, Peter Beltramo Jan 2020

Bubble Lab Exercise, Peter Beltramo

Science and Engineering Saturday Seminars

The cell membrane is a ubiquitous component in mammalian cells which control many vital biological functions. It consists of a phospholipid bilayer with embedded protein molecules which serve to transport molecules between the interior and exterior of the cell. Understanding what makes cell membranes so important and how they function requires concepts from physics, chemistry, and of course biology, but it is difficult to learn and conceptualize the structure and function of membranes due to their nanoscopic size and dynamic nature which can’t be properly appreciated in a static textbook. This activity draws analogies between the chemistry and structure of …


Engineering Ph-Dependent Antibody Interactions Through Linked Protonation Events In Interdomain Interfaces, Hyeyoung Eom Jan 2020

Engineering Ph-Dependent Antibody Interactions Through Linked Protonation Events In Interdomain Interfaces, Hyeyoung Eom

Graduate Research Theses & Dissertations

Engineered antibodies are frequently used in life science applications, such as therapeutics and clinical diagnostics. These customized antibodies typically possess enhanced binding affinity and/or specificity, yet these interactions are only one-way binding events that cannot be easily controlled without extreme changes in conditions, such as pH, denaturant, and/or temperature that likely irreversible damage the antibody and antigen. Here, we explore the design of proton-linked binding events in the context of both antibody/hapten (i.e., a low molecular weight ligand target) and antibody/antigen complexes. Specifically, this work looks to overcome the challenges of engineering pH-dependent small ligand/protein interactions, as well as develop …


A Novel Pool Of Microparticle Cholesterol Is Elevatedin Rheumatoid Arthritis But Not In Systemic Lupus Erythematosus Patients, Shuai Shuai Hu, Brenton L. Cavanagh, Robert Harrington, Muddassar Ahmad, Grainne Kearns, Steve Meaney, Claire Wynne Jan 2020

A Novel Pool Of Microparticle Cholesterol Is Elevatedin Rheumatoid Arthritis But Not In Systemic Lupus Erythematosus Patients, Shuai Shuai Hu, Brenton L. Cavanagh, Robert Harrington, Muddassar Ahmad, Grainne Kearns, Steve Meaney, Claire Wynne

Articles

Microparticles are sub-micron, membrane-bound particles released from virtually allcells and which are present in the circulation. In several autoimmune disorders their amountand composition in the circulation is altered. Microparticle surface protein expression has beenexplored as a differentiating tool in autoimmune disorders where the clinical pictures can overlap.Here, we examine the utility of a novel lipid-based marker—microparticle cholesterol, present in allmicroparticles regardless of cellular origin—to distinguish between rheumatoid arthritis (RA) andsystemic lupus erythematosus (SLE). We first isolated a series of microparticle containing lipoproteindeficient fractions from patient and control plasma. There were no significant differences in thesize, structure or protein content of …