Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Accurate Flexible Refinement Of Atomic Models Against Medium-Resolution Cryo-Em Maps Using Damped Dynamics, Julio A. Kovacs, Vitold E. Galkin, Willy Wriggers Sep 2018

Accurate Flexible Refinement Of Atomic Models Against Medium-Resolution Cryo-Em Maps Using Damped Dynamics, Julio A. Kovacs, Vitold E. Galkin, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

Background: Dramatic progress has recently been made in cryo-electron microscopy technologies, which now make possible the reconstruction of a growing number of biomolecular structures to near-atomic resolution. However, the need persists for fitting and refinement approaches that address those cases that require modeling assistance.

Methods: In this paper, we describe algorithms to optimize the performance of such medium-resolution refinement methods. These algorithms aim to automatically optimize the parameters that define the density shape of the flexibly fitted model, as well as the time-dependent damper cutoff distance. Atomic distance constraints can be prescribed for cases where extra containment of parts of …


A Balanced Approach To Adaptive Probability Density Estimation, Julio Kovacs, Cailee Helmick, Willy Wriggers Apr 2017

A Balanced Approach To Adaptive Probability Density Estimation, Julio Kovacs, Cailee Helmick, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests …


Computing Spatiotemporal Heat Maps Of Lipid Electropore Formation: A Statistical Approach, Willy Wriggers, Frederica Castellani, Julio A. Kovacs, P. Thomas Vernier Apr 2017

Computing Spatiotemporal Heat Maps Of Lipid Electropore Formation: A Statistical Approach, Willy Wriggers, Frederica Castellani, Julio A. Kovacs, P. Thomas Vernier

Mechanical & Aerospace Engineering Faculty Publications

We extend the multiscale spatiotemporal heat map strategies originally developed for interpreting molecular dynamics simulations of well-structured proteins to liquids such as lipid bilayers and solvents. Our analysis informs the experimental and theoretical investigation of electroporation, that is, the externally imposed breaching of the cell membrane under the influence of an electric field of sufficient magnitude. To understand the nanoscale architecture of electroporation, we transform time domain data of the coarse-grained interaction networks of lipids and solvents into spatial heat maps of the most relevant constituent molecules. The application takes advantage of our earlier graph-based activity functions by accounting for …


Characterization And Analysis Of Real-Time Capillary Convective Pcr Toward Commercialization, Xianbo Qiu, Shiyin Zhang, Lanju Mei, Di Wu, Ke Li, Shengxiang Ge, Xiangzhong Ye, Ningshao Xia, Michael G. Mauk Mar 2017

Characterization And Analysis Of Real-Time Capillary Convective Pcr Toward Commercialization, Xianbo Qiu, Shiyin Zhang, Lanju Mei, Di Wu, Ke Li, Shengxiang Ge, Xiangzhong Ye, Ningshao Xia, Michael G. Mauk

Mechanical & Aerospace Engineering Faculty Publications

Almost all the reported capillary convective polymerase chain reaction (CCPCR) systems to date are still limited to research use stemming from unresolved issues related to repeatability, reliability, convenience, and sensitivity. To move CCPCR technology forward toward commercialization, a couple of critical strategies and innovations are discussed here. First, single- and dual-end heating strategies are analyzed and compared between each other. Especially, different solutions for dual-end heating are proposed and discussed, and the heat transfer and fluid flow inside the capillary tube with an optimized dual-end heating strategy are analyzed and modeled. Second, real-time CCPCR is implemented with light-emitting diode and …


Microfluidic Impedance Spectroscopy As A Tool For Quantitative Biology And Biotechnology, Ahmet C. Sabuncu, Jie Zhuang, Juergen F. Kolb, Ali Beskok Jan 2012

Microfluidic Impedance Spectroscopy As A Tool For Quantitative Biology And Biotechnology, Ahmet C. Sabuncu, Jie Zhuang, Juergen F. Kolb, Ali Beskok

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to …


Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo Jan 2010

Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo

Mechanical & Aerospace Engineering Faculty Publications

Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle's zeta potential to that of microchannel. © …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian Jan 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …