Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas Jan 2022

Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas

Graduate Theses, Dissertations, and Problem Reports

Virtually all cellular processes are precisely regulated by the proteasome which is the primary enzyme responsible for the degradation of misfolded, damaged, or no longer necessary soluble proteins. To prevent any untimely degradation of these target protein substrates and protect the cell, the proteasome is tightly regulated via adaptor proteins, known as proteasomal regulators. There are many classes of proteasomal regulators each with their own unique structures, functions, and effects on protein degradation through the proteasome. One such class is the 11S family of proteasomal regulators which are also referred to as PA26/28, or REG. The 11S family are ATP-independent …


Understanding The Relationship Between Local Environmental Changes And The Function Of The Ph Low Insertion Peptide, Violetta Burns Casamayor Jan 2021

Understanding The Relationship Between Local Environmental Changes And The Function Of The Ph Low Insertion Peptide, Violetta Burns Casamayor

Graduate Theses, Dissertations, and Problem Reports

Cancer is the second leading cause of death in the US with over 1.7 million new cases each year. Current cancer treatments tend to also target healthy tissues due to similarities with cancerous ones, resulting in acute side effects. Early detection is the best approach towards defeating cancer, however, modern imaging techniques require sizeable samples, often implying a late stage in the disease. One common attribute of tumors is their acidic microenvironment, which can be taken advantage of.

The pH Low Insertion Peptide (pHLIP) is a membrane-active peptide that can take advantage of the acidic microenvironment surrounding cancer cells. pHLIP …