Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Identification Of Novel Nuclear Proteins Required For Meiotic Silencing By Unpaired Dna In Neurospora Crassa, Dilini Ralalage May 2017

Identification Of Novel Nuclear Proteins Required For Meiotic Silencing By Unpaired Dna In Neurospora Crassa, Dilini Ralalage

Theses and Dissertations

A fundamental step that occurs during sexual reproduction is meiosis, which is a specialized type of cell division. During meiosis, pairs of chromosomes exchange genetic information via recombination. At this point, the genome is particularly susceptible to viruses and other foreign genetic invasions. Therefore, it is important to protect the genome to prevent the transmission of foreign genetic materials to the offspring. There are several mechanisms work together to protect host genome from foreign genetic materials. These are known as “genome defense mechanisms”.

The fungus Neurospora crassa is one of the best organisms for genome defense studies due to the …


Studies On Solo Working Mechanism In The Meiosis Of Drosophila Melanogaster, Qian Ma Aug 2013

Studies On Solo Working Mechanism In The Meiosis Of Drosophila Melanogaster, Qian Ma

Masters Theses

In eukaryotes, sister chromatids are closely aligned due to cohesion, a process essential for chromosome pairing and segregation during both mitosis and meiosis. A conserved cohesin complex in a ring structure is composed of four subunits, including each of these four members or their homologs, SMC1, SMC3, SCC1/RAD21/REC8, and SCC3/SA. Up to now, no REC8 homolog has been identified in the meiosis of Drosophila. SOLO is a meiotic protein required for accurate chromosome segregation, centromere cohesion, and cohesin complex localization in Drosophila meiosis. In addition, SOLO is required for synapsis and recombination in Drosophila female meiosis.

In this study, …


Investigating The Roles Of Ndj1 And Tid1 In Crossover Assurance In Saccharomyces Cerevisiae, Rianna Knowles Nov 2011

Investigating The Roles Of Ndj1 And Tid1 In Crossover Assurance In Saccharomyces Cerevisiae, Rianna Knowles

Master's Theses

Meiosis is the specialized process of cell division utilized during gametogenesis in all sexually reproducing eukaryotes, which consists of one round of DNA replication followed by two rounds of chromosome segregation and results in four haploid cells. Crossovers between homologous chromosomes promote proper alignment and segregation of chromosomes during meiosis.

Crossover interference is a genetic phenomenon in which crossovers are non-randomly placed along chromosomes. Crossover assurance ensures that every homologous chromosome pair obtains at least one crossover during Prophase I. Crossovers physically connect homologous pairs, allowing spindle fibers to attach and separate homologs properly. However, some organisms have shown an …