Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

2015

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Molecular Biology

Transport Mechanisms For Human Fecal Indicator Bacteria In An Urban Stormwater Basin In Southeastern Wisconsin, Chelsea M. Corson Dec 2015

Transport Mechanisms For Human Fecal Indicator Bacteria In An Urban Stormwater Basin In Southeastern Wisconsin, Chelsea M. Corson

Theses and Dissertations

Discharge of stormwater runoff to receiving waters is a known source of human pathogens; however the primary mechanisms by which these pathogens enter the stormwater system have yet to be quantified. This study builds upon and utilizes prior research findings in an attempt to explain the influence of the age of the pipes within stormwater and sanitary conveyance systems, rainfall and hydrogeological characteristics, and select infrastructure variables that contribute to the observed contamination of an urban stormwater basin in Southeastern Wisconsin.

Over the course of approximately two years from 2012 to 2014, a total of 260 samples from 22 stormwater …


Characterization Of Sbip68: A Putative Tobacco Glucosyltransferase Protein And Its Role In Plant Defense Mechanisms, Abdulkareem O. Odesina Dec 2015

Characterization Of Sbip68: A Putative Tobacco Glucosyltransferase Protein And Its Role In Plant Defense Mechanisms, Abdulkareem O. Odesina

Electronic Theses and Dissertations

Plant secondary metabolites are essential for normal growth and development in plants ultimately affecting crop yield. They play roles ranging from appearance of the plants to defending against pathogen attack and herbivory. They have been used by humans for medicinal and recreational purposes amongst others. Glycosyltransferases catalyze the transfer of sugars from donor substrates to acceptors. Glucosyltransferases are a specific type of glycosyltransferases known to transfer glucose molecules from a glucose donor to a glucose acceptor (aglycone) producing the corresponding glucose secondary metabolite or glycone, in this case glucosides. It was hypothesized that SBIP68, a tobacco putative glucosyltransferase-like protein glucosylated …


Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare Nov 2015

Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare

Masters Theses

The extracellular matrix (ECM) provides mechanical and biochemical support to tissues and cells. It is crucial for cell attachment, differentiation, and migration, as well as for ailment-associated processes such as angiogenesis, metastases and cancer development. An approach to study these phenomena is through emulation of the ECM by synthetic gels constructed of natural polymers, such as collagen and fibronectin, or simple but tunable materials such as poly(ethylene glycol) (PEG) crosslinked with short peptide sequences susceptible to digestion by metalloproteases and cell-binding domains. Our lab uses PEG gels to study cell behavior in three dimensions (3D). Although this system fosters cell …


Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams Oct 2015

Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams

Journal of the South Carolina Academy of Science

Despite the significant impacts on human health caused by neurodegeneration, our understanding of the degeneration process is incomplete. The nematode Caenorhabditis elegans is emerging as a genetic model organism well suited for identification of conserved cellular mechanisms and molecular pathways of neurodegeneration. Studies in the worm have identified factors that contribute to neurodegeneration, including excitotoxicity and stress due to reactive oxygen species (ROS). Disruption of the gene unc-68, which encodes the ryanodine receptor, abolishes excitotoxic cell death, indicating a role for calcium (Ca2+) signaling in neurodegeneration. We tested the requirement for unc-68 in ROS-mediated neurodegeneration using the …


Incipient Speciation In Freshwater Fish Species From Two Isolated Watersheds, Paula Gore Miller Sep 2015

Incipient Speciation In Freshwater Fish Species From Two Isolated Watersheds, Paula Gore Miller

Dissertations, Theses, and Capstone Projects

The process of speciation occurs as a result of restricted gene flow between segments of an interbreeding population occupying different geographic areas. This separation may result in isolated populations which undergo genetic and phenotypic changes. The Wisconsin glacial period, which ended approximately 17,500 years ago, dramatically altered the geography of North America. The glacier covered almost the entire North America as it advanced. Areas that were not covered with ice provided suitable habitats (refugia) for relict species that were previously widespread in the northern section of the continent. As the ice sheet retreated, animals and plants were able to return …


A Forward Genetic Screen Identifies Factors Associated With Fever Pathogenesis In Plasmodium Falciparum, Phaedra J. Thomas Sep 2015

A Forward Genetic Screen Identifies Factors Associated With Fever Pathogenesis In Plasmodium Falciparum, Phaedra J. Thomas

USF Tampa Graduate Theses and Dissertations

Infectious diseases that spread from person-to-person and continent-to-continent are a cause for concern for any health entity. One such disease is malaria, a mosquito-borne infection instigated by the protozoan parasite, Plasmodium falciparum. Hundreds of millions of people are affected annually and it is responsible for nearly 1 million deaths. It is the most fatal species causing malaria and proliferates in human red blood cells with a life cycle occurring every 48 hours. At this time, the parasite’s late stage form or schizont bursts from the erythrocyte releasing immune-inducing particles and infective forms (merozoites) into the bloodstream. The merozoites go …


Precise Repair Of Mping Excision Sites Is Facilitated By Target Site Duplication Derived Microhomology, David M. Gilbert, M. Catherine Bridges, Ashley E. Strother, Courtney E. Burckhalter, James M. Burnette Iii, C. Nathan Hancock Sep 2015

Precise Repair Of Mping Excision Sites Is Facilitated By Target Site Duplication Derived Microhomology, David M. Gilbert, M. Catherine Bridges, Ashley E. Strother, Courtney E. Burckhalter, James M. Burnette Iii, C. Nathan Hancock

Faculty Publications

A key difference between the Tourist and Stowaway families of miniature inverted repeat transposable elements (MITEs) is the manner in which their excision alters the genome. Upon excision, Stowaway-like MITEs and the associated Mariner elements usually leave behind a small duplication and short sequences from the end of the element. These small insertions or deletions known as “footprints” can potentially disrupt coding or regulatory sequences. In contrast, Tourist-like MITEs and the associated PIF/Pong/Harbinger elements generally excise precisely, returning the genome to its original state. The purpose of this study was to determine the mechanisms underlying these …


Wintering Bald Eagle Count Trends In The Conterminous United States, 1986-2010, Wade L. Eakle, Laura Bond, Mark R. Fuller, Richard A. Fischer, Karen Steenhof Sep 2015

Wintering Bald Eagle Count Trends In The Conterminous United States, 1986-2010, Wade L. Eakle, Laura Bond, Mark R. Fuller, Richard A. Fischer, Karen Steenhof

Biomolecular Research Center Publications and Presentations

We analyzed counts from the annual Midwinter Bald Eagle Survey to examine state, regional, and national trends in counts of wintering Bald Eagles (Haliaeetus leucocephalus) within the conterminous 48 United States from 1986 to 2010. Using hierarchical mixed model methods, we report trends in counts from 11 729 surveys along 844 routes in 44 states. Nationwide Bald Eagle counts increased 0.6% per yr over the 25-yr period, compared to an estimate of 1.9% per yr from 1986 to 2000. Trend estimates for Bald Eagles were significant (P ≤ 0.05) and positive in the northeastern and northwestern U.S. …


Planting The Chalcone Reductase Family Tree: Identification And Characterization Of Chalcone Reductase Genes In Soybean, Caroline Julia Sepiol Aug 2015

Planting The Chalcone Reductase Family Tree: Identification And Characterization Of Chalcone Reductase Genes In Soybean, Caroline Julia Sepiol

Electronic Thesis and Dissertation Repository

Soybean (Glycine max [L.] Merr) is an important crop grown in Canada, generating $2.4 billion in sales. Though this number may be promising, soybean farmers lose about $50 million worth of yield annually due to root and stem rot disease caused by Phytophthora sojae. Many strategies have been developed to combat the infection; however, these methods are prohibitively expensive. A ‘cost effective’ approach to this problem is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of root glyceollins. One of the key enzymes exclusively involved in glyceollin …


Role Of Ime4 Protein In Pho Regulon Of S.Cerevisiae., Jenisha Ghimire Aug 2015

Role Of Ime4 Protein In Pho Regulon Of S.Cerevisiae., Jenisha Ghimire

University of New Orleans Theses and Dissertations

In the yeast Saccharomyces cerevisiae, the IME4 methyltransferase, interacts genetically with methyl binding protein, Pho92, to affect the expression of PHO regulon target genes. Cells mutant in IME4 or PHO92 show increases in the RNA abundance of PHO regulon target genes. The increase in the RNA abundance of the PHO regulon target genes is not additive in the cells double mutant in IME4 and PHO92. Hence, Ime4 and Pho92 interact in a single pathway in PHO regulon. Surprisingly, cells overexpressing IME4 and MUM2 shows increase in some PHO regulon target genes, indicating that IME4 affects the PHO regulon target …


A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus Aug 2015

A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lignin, a complex organic polymer, is a major roadblock to the efficiency of biofuel conversion as it both physically blocks carbohydrate substrates and poisons biomass degrading enzymes, even if broken down to monomer units. A pretreatment process is often applied to separate the lignin from biomass prior to biofuel conversion. However, contemporary methods of pretreatment require large amounts of energy, which may be economically uncompelling or unfeasible. Taking inspiration from several genes that have been isolated from termites and fungi which translate to enzymes that degrade lignin, we want to establish a novel “enzymatic pretreatment” system where microbes secrete these …


Investigating The Interaction Of Aurka And Ube2c In Colorectal Cancer Cells, Apurva M. Hegde Aug 2015

Investigating The Interaction Of Aurka And Ube2c In Colorectal Cancer Cells, Apurva M. Hegde

Dissertations & Theses (Open Access)

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the US. Among the many genomic aberrations previously implicated in colorectal cancer, recurrent amplification of chromosome 20q is frequently associated with liver metastasis. Previous research in our lab identified a gene signature on chromosome 20q associated with colorectal cancer progression. In this study, one of the genes in the signature, the ubiquitin conjugating enzyme UBE2C, was identified through preliminary bioinformatics analysis as a candidate for further examination of its role in CRC progression. Co-expression analysis of UBE2C in tumor-normal datasets from the public database Oncomine revealed all the …


Manipulating Adipose Tissue Fatty Acid Oxidation To Reduce Fatness In Broiler Chickens, Tania Emmanuelle Torchon Aug 2015

Manipulating Adipose Tissue Fatty Acid Oxidation To Reduce Fatness In Broiler Chickens, Tania Emmanuelle Torchon

Masters Theses

Compared to rodents, broiler chickens, those reared for meat, are an attractive model for studies of adipose biology, and obesity development in children. The broiler chicken lacks the gene for uncoupling protein 1, the hallmark for brown adipose tissue making them a useful model to study lipid metabolism in white adipocytes. Two studies were performed to investigate if white adipose tissue had the metabolic ability for fatty acid oxidation (FAO), and to investigate the effects of dietary fatty acids on abdominal fat development of young broiler chickens as a model for childhood obesity. In study one, chickens were fasted for …


Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh Jul 2015

Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh

Madhuri Kango-Singh

Background: Alzheimer's disease (AD) is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42) polypeptides formed by the improper cleavage of amyloid precursor protein (APP) in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s) responsible for this neurodegeneration still remain elusive. Methodology/Principal Findings: We have generated a transgenic Drosophila eye model where …


Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh Jul 2015

Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh

Amit Singh

Background: Alzheimer's disease (AD) is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42) polypeptides formed by the improper cleavage of amyloid precursor protein (APP) in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s) responsible for this neurodegeneration still remain elusive. Methodology/Principal Findings: We have generated a transgenic Drosophila eye model where …


Chronic Inflammation As A Result Of Hepatitis C Virus Infection: A Review Of The Literature, Samantha L. Lane May 2015

Chronic Inflammation As A Result Of Hepatitis C Virus Infection: A Review Of The Literature, Samantha L. Lane

DePaul Discoveries

Approximately 170 million people are infected with Hepatitis C virus (HCV) worldwide5,6. It is estimated that roughly 80% of those infected suffer from persistent infection with the virus; this persistence of infection is progressive, and over time can lead to fibrosis, cirrhosis, and hepatocellular carcinoma7. Chronic inflammation and apoptotic deregulation are both hallmarks of chronic HCV infection, and many molecular pathways are initiated in both the innate and adaptive immune responses during infection with this viral pathogen. The aim of this review was to survey some of the major molecular mechanisms responsible for the induction of …


Section Abstracts: Biology With Microbiology And Molecular Biology May 2015

Section Abstracts: Biology With Microbiology And Molecular Biology

Virginia Journal of Science

Abstracts of the Biology with Microbiology and Molecular Biology Section for the 93rd Annual Meeting of the Virginia Academy of Science, May 21-23, 2015, James Madison University, Richmond, Virginia


Characterization Of A Novel Clade Of Transporters In Phytophthora, Stephanie Padula, Paul F. Morris Dr, Howard Casey Cromwell Dr., Menaka Ariyaratne, Andrew Wagner May 2015

Characterization Of A Novel Clade Of Transporters In Phytophthora, Stephanie Padula, Paul F. Morris Dr, Howard Casey Cromwell Dr., Menaka Ariyaratne, Andrew Wagner

Honors Projects

The oomycete Phytophthora parasitica has a worldwide distribution and is an economically important pathogen of more than 100 species4. RNA-seq analysis showed that one gene, PPTG_16698 has the 5th highest level of expression of all transport proteins in the zoospore stage, and is highly conserved throughout Phytophthora species. This project attempts to characterize the important biological role that PPTG_16698 plays in P. parasitica and other oomycetes. Three strategies have been implemented to accomplish this goal: growth analysis by heterologous expression in yeast, metabolite analysis in yeast, and construction of a GFP fusion protein to enable localization of …


Heterogeneous Dynamics In Dna Site Discrimination By The Structurally Homologous Dna-Binding Domains Of Ets-Family Transcription Factors, Gaofei He, Ana Tolic, James Bashkin, Gregory Poon Apr 2015

Heterogeneous Dynamics In Dna Site Discrimination By The Structurally Homologous Dna-Binding Domains Of Ets-Family Transcription Factors, Gaofei He, Ana Tolic, James Bashkin, Gregory Poon

Chemistry & Biochemistry Faculty Works

The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only …


Heterogeneous Dynamics In Dna Site Discrimination By The Structurally Homologous Dna-Binding Domains Of Ets-Family Transcription Factors, Gaofei He, Ana Tolic, James K. Bashkin, Gregory M. K. Poon Apr 2015

Heterogeneous Dynamics In Dna Site Discrimination By The Structurally Homologous Dna-Binding Domains Of Ets-Family Transcription Factors, Gaofei He, Ana Tolic, James K. Bashkin, Gregory M. K. Poon

James Bashkin

The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only …


The Effect Of Red Maple Leaf Toxicosis On Reduced Glutathione Levels In Equine Erythrocytes In Vitro, Madeline A. Rohl Apr 2015

The Effect Of Red Maple Leaf Toxicosis On Reduced Glutathione Levels In Equine Erythrocytes In Vitro, Madeline A. Rohl

Undergraduate Honors Thesis Projects

Red maple leaf toxicosis is an equine blood disorder resulting from the consumption of wilted red maple (Acer rubrum L.) leaves by horses. Compounds within the leaves of red maple have oxidative effects on equine erythrocytes and can cause hemolysis of erythrocytes, the conversion of hemoglobin to methemoglobin, and the production of Heinz bodies. Reduced glutathione is important in the protection of equine erythrocytes from these oxidative events; however, in the presence of red maple toxin, glutathione is rapidly oxidized and is unavailable. The objective of this study is to determine whether the presence of vitamin C alters levels …


Analysis Of Chd Remodelers During Development: A Tale In Two Organisms, Brett Bishop Apr 2015

Analysis Of Chd Remodelers During Development: A Tale In Two Organisms, Brett Bishop

Open Access Dissertations

The correct development of different organisms requires the precise timing of genes important for development transitions. Organisms have recruited ATP-dependent chromatin remodelers to ensure the correct timing of gene expression during developmental transitions. Here I show how different CHD ATP-dependent chromatin remodelers regulate developmental transitions of different organisms. I show that PICKLE not only promotes H3K27me3 during development to repress developmental genes but also is targeted to these genes. The association of PICKLE to these genes suggests that both repression and H3K27me3 levels is a direct action of PICKLE on these loci. Using zebrafish as a model system, I show …


Redox Regulation Of Ras Proteins In Dictyostelium Discoideum, Boris Castillo Chabeco Mar 2015

Redox Regulation Of Ras Proteins In Dictyostelium Discoideum, Boris Castillo Chabeco

FIU Electronic Theses and Dissertations

Reactive oxygen species are a normal consequence of life in an aerobic environment. However when they deviate from the narrow permissible range in cells, oxidative damage can occur. Dictyostelium discoideum is a model organism ideal for the study of cell signaling events such as those affected by oxidative stress. It was previously shown that Ras signaling in Dictyostelium is affected by genetic inactivation of the antioxidant enzyme Superoxide dismutase C (SodC) and in vitro data suggests that the NKCD motif of Ras is the redox target of superoxide.

The main objective of this project was to determine the mechanism of …


Thermocycle-Regulated Wall Regulator Interacting Bhlh Encodes A Protein That Interacts With Secondary-Cell-Wall-Associated Transcription Factors, Ian P. Whitney Mar 2015

Thermocycle-Regulated Wall Regulator Interacting Bhlh Encodes A Protein That Interacts With Secondary-Cell-Wall-Associated Transcription Factors, Ian P. Whitney

Masters Theses

Lignocellulosic biomass is one of the most abundant raw materials on earth that can be utilized to created carbon-neutral biofuels as a replacement for conventional fossil fuels. In order to create ideal energy crops, the regulation and deposition of cell wall polysaccharides must first be fully understood. Improved understanding of cell wall regulation will enable selection of traits that can optimize biofuel feedstocks. Herein, I utilize the grass model system Brachypodium distachyon in order to understand the transcriptional regulation of secondary cell wall deposition. Gene expression profiling was used to elucidate transcription factors that regulate secondary cell wall biosynthesis. Through …


Conditional Regulation Of Puf1p, Puf4p, And Puf5p Activity Alters Yhb1 Mrna Stability For A Rapid Response To Toxic Nitric Oxide Stress In Yeast, Joseph Russo, Wendy Olivas Mar 2015

Conditional Regulation Of Puf1p, Puf4p, And Puf5p Activity Alters Yhb1 Mrna Stability For A Rapid Response To Toxic Nitric Oxide Stress In Yeast, Joseph Russo, Wendy Olivas

Biology Department Faculty Works

Puf proteins regulate mRNA degradation and translation through interactions with 3' untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3' UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay …


Conditional Regulation Of Puf1p, Puf4p, And Puf5p Activity Alters Yhb1 Mrna Stability For A Rapid Response To Toxic Nitric Oxide Stress In Yeast, Joseph Russo, Wendy M. Olivas Mar 2015

Conditional Regulation Of Puf1p, Puf4p, And Puf5p Activity Alters Yhb1 Mrna Stability For A Rapid Response To Toxic Nitric Oxide Stress In Yeast, Joseph Russo, Wendy M. Olivas

Wendy Olivas

Puf proteins regulate mRNA degradation and translation through interactions with 3' untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3' UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay …


A Functional Chlorophyll Biosynthesis Pathway Identified In The Kleptoplastic Sea Slug, Elysia Chlorotica, Julie A. Schwartz Feb 2015

A Functional Chlorophyll Biosynthesis Pathway Identified In The Kleptoplastic Sea Slug, Elysia Chlorotica, Julie A. Schwartz

USF Tampa Graduate Theses and Dissertations

The sacoglossan sea slug, Elysia chlorotica, feeds upon and sequesters plastids from the heterokont alga, Vaucheria litorea, and maintains the metabolically active organelles for up to nine months under starvation conditions while utilizing the photosynthate to survive and reproduce. The photosynthetic pigment, chlorophyll a (Chla), is found in all oxygenic photosynthetic organisms and is responsible for capturing photons of light and converting them into chemical energy. Chlorophyll and its associated proteins involved in the light capturing process are subject to photo oxidative damage and must be continually replaced for ongoing photosynthesis to continue; however, genes encoding these proteins are present …


Functional Characterization Of The Plant 15-Cis-Zeta-Carotene Isomerase Z-Iso, Jesus Alonso Beltran Zambrano Feb 2015

Functional Characterization Of The Plant 15-Cis-Zeta-Carotene Isomerase Z-Iso, Jesus Alonso Beltran Zambrano

Dissertations, Theses, and Capstone Projects

Vitamin A deficiency is a widespread health issue in the tropics. To solve this issue, efforts are underway to increase provitamin A carotenoids such as β-carotene in staple crops which can be achieved by breeding, metabolic engineering or a combination of both approaches. However, rational strategies to improve carotenoid content in crops require sufficient knowledge of pathway regulation. Therefore, to better understand how plants synthesize provitamin A and to guide metabolic engineering strategies in crops such as maize, the functional characterization of the new ζ-carotene isomerase (Z-ISO) is of significant importance.

Z-ISO was recently discovered in maize and Arabidopsis (Chen …


Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan Jan 2015

Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan

Wayne State University Dissertations

SIN3, the scaffold protein of a histone modifying complex is conserved from yeast to mammals. Drosophila SIN3 associates with both a histone deactylase RPD3 and a histone demethylase dKDM5/LID. Immunopurification of dKDM5/LID verifies a previously observed interaction with SIN3 and RPD3. Furthermore, deficiency of dKDM5/LID phenocopies deficiency of SIN3 in many cellular and developmental processes. Knockdown of both Sin3A and lid hinder cell proliferation in Drosophila cultured cells and developing flies. Knockdown of these genes also results in a curved wing phenotype implicating a role in wing development. Analysis of underlying gene expression changes upon decreased expression of SIN3, dKDM5/LID …


Drosophila Cyclin J And The Somatic Pirna Pathway Cooperate To Regulate Germline Stem Cells, Paul Michael Albosta Jan 2015

Drosophila Cyclin J And The Somatic Pirna Pathway Cooperate To Regulate Germline Stem Cells, Paul Michael Albosta

Wayne State University Dissertations

Cyclin J (CycJ) is a highly conserved cyclin that is uniquely expressed specifically in ovaries in Drosophila. Deletion of the genomic region containing CycJ and adjacent genes resulted in a genetic interaction with neighboring piRNA pathway gene, armitage (armi). Here I assessed oogenesis in CycJ null in the presence or absence of mutations in armi or other piRNA pathway genes. Although CycJ null flies had decreased egg laying and hatching rates, ovaries appeared normal indicating that CycJ is dispensable for oogenesis under normal conditions. Further double mutant analysis of CycJ and neighbor armi, as well as two other piRNA pathway …