Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

East Tennessee State University

Theses/Dissertations

Salicylic Acid

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Sip-428, A Sir2 Deacetylase Enzyme And Its Role In Biotic Stress Signaling Pathway, Bal Krishna Chand Thakuri Dec 2018

Sip-428, A Sir2 Deacetylase Enzyme And Its Role In Biotic Stress Signaling Pathway, Bal Krishna Chand Thakuri

Electronic Theses and Dissertations

SABP2 (Salicylic Acid Binding Protein 2) plays a vital role in the salicylic acid signaling pathway of plants both regarding basal resistance and systemic acquired resistance against pathogen infection. SIP-428 (SABP2 Interacting Protein-428) is a Silent information regulator 2 (SIR2) like deacetylase enzyme that physically interacts with SABP2 in a yeast two-hybrid interaction and confirmed independently by a GST pull-down assay. We demonstrated that SIP- 428 is an NAD+ dependent SIR2 deacetylase enzyme. Transgenic tobacco plants silenced in SIP- 428 expression via RNAi showed enhanced basal resistance to microbial pathogens. Moreover, these SIP-428-silenced lines also exhibited a robust induction of …


Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean Dec 2014

Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean

Electronic Theses and Dissertations

Plants are in a perpetual evolutionary arms race with a wide range of pathogens. Their sessile nature has led plants to evolve defense mechanisms that can quickly recognize a unique stressor and deploy a resistance tailored for a specific attack. The salicylic acid (SA) mediated defense pathway has been shown to be one of the major defense tactics plants can initiate to defend themselves against microbial pathogens. Following a pathogen attack high levels of methyl salicylate (MeSA) are produced that can be converted to SA by the enzyme salicylic acid binding protein 2 (SABP2). A yeast two-hybrid screening was performed …