Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes Aug 2022

Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes

All Dissertations

Cryptococcus neoformans is an opportunistic fungal pathogen, infecting mainly immunocompromised individuals. As the main cause of cryptococcosis, it is responsible for over 180,000 deaths every year. As an environmental yeast, it has unique adaptations that allow it to proliferate in the human host. Among these adaptations its capacity to transition to an extreme phenotype known as Titan cells is of special interest to researchers. With sizes above 10 um and able to reach 70 um or more in cell size. This size is accompanied with a large vacuole, larger polysaccharide capsule, and an increased resistance to fluconazole (FLC). FLC is …


Cancer And Quiescence: Investigating How The Dream Complex And Retinoblastoma Regulate The Cell Cycle, Lydia Rotman Jan 2022

Cancer And Quiescence: Investigating How The Dream Complex And Retinoblastoma Regulate The Cell Cycle, Lydia Rotman

Dissertations, Master's Theses and Master's Reports

An estimated 1.9 million people in the United States will be diagnosed with cancer in 2022. Cancer is characterized by uncontrolled cell growth, resulting from loss-of-function of key cell cycle regulatory proteins. The retinoblastoma protein (pRb) and p130, are two proteins that regulate cellular entry into the cell cycle. Both pRb and p130 repress expression of cell cycle genes, with pRb interacting with and suppressing E2F-DP transcriptional activators and p130 assembling in the DREAM transcriptional repressor complex. When normal cells receive signals to enter the cell cycle, cyclin and cyclin-dependent kinase (CDK) complexes phosphorylate pRb and p130, causing both to …


Investigating E2f Independent Cell Cycle Control And Tumor Suppression By Prb, Michael J. Thwaites Apr 2017

Investigating E2f Independent Cell Cycle Control And Tumor Suppression By Prb, Michael J. Thwaites

Electronic Thesis and Dissertation Repository

Cellular division is primarily controlled at the G1 to S-phase transition of the cell cycle by the retinoblastoma tumor-suppressor protein (pRB). The ability of pRB to restrict S-phase entry is primarily attributed to the repression of E2F transcription factors required to upregulate cell cycle target genes necessary for cellular division. Interestingly, while pRB is disrupted in the vast majority of human cancers, mutations typically target upstream regulators of pRB leading to inactivation through hyperphosphorylation. The rarity of direct pRB mutations suggests that the regulation of the cell cycle by pRB may involve additional mechanisms outside of E2F repression, as this …


Significance Of Pten Phosphorylation And Its Nuclear Function In Lung Cancer, Prerna Malaney Nov 2016

Significance Of Pten Phosphorylation And Its Nuclear Function In Lung Cancer, Prerna Malaney

USF Tampa Graduate Theses and Dissertations

Phosphorylation mediated inactivation of PTEN leads to multiple malignancies with increased severity. However, the consequence of such inactivation on downstream functions of PTEN are poorly understood. Therefore, the objective of my thesis is to ascertain the molecular mechanisms by which PTEN phosphorylation drives lung cancer. PTEN phosphorylation at the C-terminal serine/threonine cluster abrogates its tumor suppressor function. Despite the critical role of the PTEN C-tail in regulating its function, the crystal structure of the C-tail remains unknown. Using bioinformatics and structural analysis, I determined that the PTEN C-tail is an intrinsically disordered region and is a hot spot for post-translational …


Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau Jul 2016

Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau

Doctoral Dissertations

Intracellular protein destruction is a carefully coordinated and timed regulatory mechanism that cells utilize to modulate growth, adaptation to environmental cues, and survival. In Caulobacter crescentus, a bacterium known for studies of bacterial cell division cycle, the response regulator CpdR couples phosphorylation events with the AAA+ protease ClpXP to provide punctuated degradation of crucial substrates involved in cell cycle regulation. CpdR functions like an adaptor to alter substrate choice by ClpXP, however it remains unclear how CpdR influences its multiple targets. In this thesis, we show that, unlike canonical ClpXP adaptors, CpdR alone does not strongly bind its substrate. …


Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad Jan 2015

Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad

Theses and Dissertations

Glioblastoma multiforme (GBM) is the most common primary brain tumor. Studies have shown that targeting the DNA damage response can sensitize cancer cells to DNA damaging agents. Ataxia telangiectasia mutated (ATM) is involved in signaling DNA double strand breaks. Our group has previously shown that ATM inhibitors (ATMi) sensitize GBM cells and tumors to ionizing radiation. This effect is greater when the tumor suppressor p53 is mutated.

The goals of this work include validation of a new ATM inhibitor, AZ32, and elucidation of how ATMi and p53 status interact to promote cell death after radiation. We propose that ATMi and …


Direct Control Of Cell Cycle Gene Expression By Proto-Oncogene Product Actr, And Its Autoregulation Underlies Its Transforming Activity, Maggie C. Louie, Alexey S. Revenko, June X. Zou, Jennifer Yao, Hong-Wu Chen Jan 2006

Direct Control Of Cell Cycle Gene Expression By Proto-Oncogene Product Actr, And Its Autoregulation Underlies Its Transforming Activity, Maggie C. Louie, Alexey S. Revenko, June X. Zou, Jennifer Yao, Hong-Wu Chen

Collected Faculty and Staff Scholarship

ACTR (also called AIB1 and SRC-3) was identified as a coactivator for nuclear receptors and is linked to multiple types of human cancer due to its frequent overexpression. However, the molecular mechanism of ACTR oncogenicity and its function independent of nuclear receptors remain to be defined. We demonstrate here that ACTR is required for both normal and malignant human cells to effectively enter S phase. RNA interference-mediated depletion and chromatin immunoprecipitation assays show that endogenous ACTR directly controls the expression of genes important for initiation of DNA replication, which include cdc6, cdc25A, MCM7, cyclin E, and Cdk2. Moreover, consistent with …