Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon Dec 2021

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon

Theses & Dissertations

A myriad of genetic and other abnormal changes underlies the aggressiveness and dissemination properties observed in pancreatic cancer (PC). Aberrant protein glycosylation is a commonly observed feature in PC. The modification of protein O-glycosylation is mediated by glycosyltransferases, which attach and sequentially elongate monosaccharides on Serine/Threonine (Ser/Thr) motifs. Aberrant glycosylation is recognized as an emerging hallmark of cancer where a disruption in normal glycosylation results in irregular O-glycans.

This dissertation research has investigated the consequences of aberrant protein glycosylation on stemness and enhancement of metastatic properties in pancreatic ductal adenocarcinoma (PDAC). Several publications have reported aberrant O-glycosylation increases in oncogenic …


Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike Aug 2021

Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike

Department of Biochemistry: Dissertations, Theses, and Student Research

Plant oils are an important source of food, fuel, and feed in our society today. The oil found in the seeds of plants is composed almost entirely of triacylglycerol (TAG) molecules, which consist of three fatty acids esterified to a glycerol backbone. As crude oil supplies decline, vegetable oils are gaining traction as a renewable substitute to petroleum-based materials in fuels, lubricants, and specialty oleochemicals. However, as it currently stands vegetable oils do not possess the properties necessary to fill the void of a petroleum free world.

To address this problem, plant biotechnologists have done extensive work on genetic engineering …


High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon Jun 2021

High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon

FIU Electronic Theses and Dissertations

The dinoflagellate Karenia brevis, blooms annually in the Gulf of Mexico, producing a suite of neurotoxins known as the brevetoxins. The cellular toxin content of K. brevis, however, is highly variable between or even within strains. I investigated biochemical differences between high (KbHT) and low (KbLT) toxin producing cultures both derived from the Wilson strain, related to energy-dependent quenching (qE) by photosystem II, and the content of reduced thiols of the proteome. By characterizing the xanthophyll content of the two strains I was able to determine that KbLT performs qE inconsistently. To investigate the …


Mediation Of The Uncoupled Enos Pathway Following Oxidative Stress Using Tetrahydrobiopterin And Nitric Oxide Donor Drugs To Restore Tetrahydrobiopterin Concentration, Brianna Munnich Apr 2021

Mediation Of The Uncoupled Enos Pathway Following Oxidative Stress Using Tetrahydrobiopterin And Nitric Oxide Donor Drugs To Restore Tetrahydrobiopterin Concentration, Brianna Munnich

Scholar Week 2016 - present

Presentation Location: Warming House, Olivet Nazarene University

Abstract

The eNOS pathway, found in the endothelium of blood vessels, is a key regulator of nitric oxide levels in the circulatory system. The pathway is controlled through several positive and negative feedback loops [2]. The cofactor tetrahydrobiopterin (BH4) is a major control point in this pathway and under conditions of stress can be reduced into the dihydrobiopterin (BH2) [2,6,7,8,9]. When the reduced form is predominant, the pathway produces reactive oxygen species (ROS) rather than nitric oxide, causing stress and damage to the vessels [6,7,8,9]. In this study, different treatments were studied …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda Apr 2021

Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda

Senior Theses

OleT, a member of the CYP152 family of cytochrome P450s (CYPs), decarboxylates fatty acids using hydrogen peroxide as an oxidant. The resultant products are a terminal alkene and carbon dioxide. This C–C cleavage reaction is highly atypical for CYPs, which prototypically oxygenate substrates, and provides a potential means to enzymatically produce drop-in fuels. OleT contains a heme-iron cofactor that facilitates decarboxylation through the activation of hydrogen peroxide. The catalytic cycle, as determined by transient kinetics, includes two ferryl intermediates known as Compound I (Ole-I) and Compound II (Ole-II). Ole-I performs substrate hydrogen abstraction and subsequent single electron transfer to Ole-II …


Development Of Linked-Domain Protein Inhibitors Of The E2-Conjugating Enzyme Ube2d, Anneroos E. Nederstigt Jan 2021

Development Of Linked-Domain Protein Inhibitors Of The E2-Conjugating Enzyme Ube2d, Anneroos E. Nederstigt

University of the Pacific Theses and Dissertations

In most eukaryotic organisms, the ubiquitination pathway is one of the most important and versatile signaling systems in use. It is integral to processes such as protein degradation and homeostasis, DNA repair cell cycle regulation, signaling and regulation, epigenetics, and many more. Ubiquitin (Ub) is a short polypeptide of 8.6 kDa, 76 residues that functions as a reversible post-translation modification (PTM). It furthermore contains 7 different lysine residues (K6, K11, K27, K29, K33, K48, K63), all of which can form isopeptide linkages with one another to link individual Ub moieties to form unique polyUb chains onto substrates. The type of …