Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Electronic Thesis and Dissertation Repository

Atherosclerosis

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli Aug 2019

Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli

Electronic Thesis and Dissertation Repository

Elevated plasma lipoprotein(a) (Lp(a)) is the most prevalent heritable risk factor in the development of cardiovascular disease. The apolipoprotein(a) (apo(a)) component of Lp(a) is strongly implicated in the pathogenicity of Lp(a). It is hypothesized that the inflammatory potential of Lp(a)/apo(a) is mediated by the lysine binding ability of the apo(a) kringle IV10 (KIV10) domain, along with its covalently bound oxidized phospholipid (oxPL). Using targeted mutagenesis, two novel null alleles for the LPA gene that generate non-secretable apo(a) species have been identified, resulting from amino acid substitutions in the KIV10 domain. A potential mechanism by which KIV10 oxPL modification is enriched …


Regulation Of Lipid Homeostasis, Inflammatory Signalling And Atherosclerosis By The Peroxisome Proliferator-Activated Receptor Delta, Lazar A. Bojic Jun 2013

Regulation Of Lipid Homeostasis, Inflammatory Signalling And Atherosclerosis By The Peroxisome Proliferator-Activated Receptor Delta, Lazar A. Bojic

Electronic Thesis and Dissertation Repository

The peroxisome proliferator-activated receptor (PPAR) δ is a ligand-dependent transcription factor that has been implicated in metabolic and inflammatory regulation. The molecular and physiological mechanisms by which PPARδ activation regulates lipid metabolism, inflammatory signaling and protection from atherosclerosis in states of metabolic disturbance such as insulin resistance and dyslipidemia, were investigated in a series of in vitro and in vivo studies. In vitro experiments demonstrated that PPARδ activation inhibits atherogenic lipoprotein-induced lipid accumulation and the associated proinflammatory responses. The primary mechanisms for these effects were increased fatty acid β-oxidation, decreased lipoprotein lipase (LPL) activity, reduced MAPK signaling and improved insulin …