Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

University of Tennessee, Knoxville

Transit peptide

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Experimental And Computational Analysis Of Chloroplast Transit Peptide Domain Architecture And Function, Prakitchai Chotewutmontri May 2013

Experimental And Computational Analysis Of Chloroplast Transit Peptide Domain Architecture And Function, Prakitchai Chotewutmontri

Doctoral Dissertations

The Majority of chloroplast proteins are nuclear-encoded and utilize an N-terminal transit peptide (TP) to target into chloroplasts via the general import pathway. Bioinformatic and proteomic analyses provide thousands of predicted TPs, which show low sequence similarity. How the common chloroplast translocon components recognize these diverse TPs is not well understood. Previous results support either sequence- or physicochemical-specific recognitions. To further address this question, a reverse sequence approach was utilized such that the reverse TP contains the same amino acid composition as wild-type TP but lack similar sequence motifs. Using both native and reverse TPs of the two well-studied precursors, …


Dynamics Of The Toc Gtpases: Modulation By Nucleotides And Transit Peptides Reveal A Mechanism For Chloroplast Protein Import, Lovett Evan Reddick May 2010

Dynamics Of The Toc Gtpases: Modulation By Nucleotides And Transit Peptides Reveal A Mechanism For Chloroplast Protein Import, Lovett Evan Reddick

Doctoral Dissertations

The chloroplast is the green organelle in the plant cell responsible for harvesting energy from sunlight and converting it into sugars and ATP. Origins of this organelle can be traced back to an endosymbiotic event in which a primitive eukaryotic cell capable of oxidative phosphorylation engulfed a free-living cyanobacterium capable of photosynthetic respiration (1). Immediately following this event the details are not clear, however what is known is that over the course of evolution, the engulfed cyanobacteria relinquished approximately 97% of its protein coding sequences to the host cell nucleus, thus making the newly formed chloroplast reliant on its host …