Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Molecular Biology

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou Dec 2023

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou

Doctoral Dissertations

Candida albicans phosphatidylserine (PS) synthase, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis due to its importance in virulence, absence in the host and conservation among fungal pathogens. This dissertation is focused on the identification of inhibitors for this membrane enzyme. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif present within Cho1, and here we revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1. For serine, we have predicted a …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Electron Transport To Photosystem I By Soluble Carriers: Evolution Of The Interacting Pair, Khoa Dang Nguyen Aug 2016

Electron Transport To Photosystem I By Soluble Carriers: Evolution Of The Interacting Pair, Khoa Dang Nguyen

Doctoral Dissertations

Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI) reaction centers via the Z-­‐scheme. Both of these pigment– membrane protein complexes are found in cyanobacteria, algae, and plants. PSI, unlike PSII, is remarkably stable and does not undergo limiting photo-­‐damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H2. Here, …


Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis Aug 2016

Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis

Doctoral Dissertations

The natural recalcitrance of plant cell walls is a major commercial hurdle for plant biomass to be converted into a viable energy source as alternative to fossil fuels. To circumvent this hurdle manipulation of carbohydrate enzymes active in the cellulose and hemicellulose portions of the plant cell wall can be utilized to improve feedstocks. Production of cellulolytic enzymes by plants have been evaluated for reducing the cost associated with lignocellulosic biofuels. Plants have successfully served as bioreactors producing bacterial and fungal glycosyl hydrolases, which have altered plant growth to improve saccharification. A bioprospecting opportunity lies with the utilization of insect …


Characterization Of An Ethylene Receptor In Synechocystis Sp. Pcc 6803, Randy Francis Lacey Aug 2016

Characterization Of An Ethylene Receptor In Synechocystis Sp. Pcc 6803, Randy Francis Lacey

Doctoral Dissertations

In plants, ethylene functions as a hormone regulating many growth and developmental processes. Ethylene receptors in plants resemble bacterial two-component signaling systems. Because of this it, ethylene receptors are thought to have been acquired by gene transfer from the cyanobacterial endosymbiont that lead to the development of the chloroplast. However, prior to this work, functional ethylene receptors were thought to only be found in green plants. Here, we show that the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) contains a functional ethylene receptor, SynEtr1. SynEtr1 contains a predicted ethylene binding domain, a photosensory cyanobacteriochrome (CBCR) domain, and a histidine …


Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi Aug 2015

Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi

Doctoral Dissertations

Waterlogging stress leads to a crisis in energy metabolism and the accumulation of toxic metabolites due to the hypoxic and/or anoxic environment associated with this condition. To respond and adapt to this situation, higher plants employ an integrated genetic program that leads to the induction of anaerobic response polypeptide genes that encode metabolic and signaling proteins involved in altering metabolic flow and other adaptive responses. The study presented here shows that the Arabidopsis thaliana calmodulin-like protein CML38 is calcium sensor protein that serves as a member of the core anaerobic response gene family and is involved in modulating the survival …


Characterization Of The Role Of Alpha-Arylphorin In The Heliothis Virescens Midgut Response To Cry1ac Toxin From Bacillus Thuringiensis, Jerreme Jamael Jackson May 2015

Characterization Of The Role Of Alpha-Arylphorin In The Heliothis Virescens Midgut Response To Cry1ac Toxin From Bacillus Thuringiensis, Jerreme Jamael Jackson

Doctoral Dissertations

Homeostasis of the intestinal epithelium in Heliothis virescens is mediated by the proliferation and differentiation of multipotent intestinal stem cells (ISCs) that lie adjacent to the basal lamina. In response to extrinsic and intrinsic signals, ISC proliferation and differentiation promotes epithelial growth and regeneration following the loss of integrity. We tested the in vivo effects of the ISC mitogen, a [alpha]-arylphorin, on ISC proliferation and the morphological changes of the midgut during larval development. Additionally, we examined how these changes affected the intestinal epithelium response to Cry1Ac toxin from Bacillus thuringiensis. Histological and in vitro evidence supported two distinct …


Pore Selectivity And Gating Of Arabidopsis Nodulin 26 Intrinsic Proteins And Roles In Boric Acid Transport In Reproductive Growth, Tian Li Dec 2014

Pore Selectivity And Gating Of Arabidopsis Nodulin 26 Intrinsic Proteins And Roles In Boric Acid Transport In Reproductive Growth, Tian Li

Doctoral Dissertations

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional channels of uncharged metabolites and water. They share the same canonical hourglass fold as the aquaporin family. The aromatic arginine (ar/R) selectivity filter controls transport selectivity based on size, hydrophobicity, and hydrogen bonding with substrates. In Arabidopsis thaliana, NIP II subclass proteins contain a conserved ar/R “pore signature” that is composed of Alanine at the helix 2 position (H2), Valine/Isoleucine at the helix 5 position (H5), and an Alanine (LE1) and an invariant Arginine (LE2) at the two loop E positions. In this study, …


Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood Dec 2014

Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood

Doctoral Dissertations

Microbial chemotaxis receptors (chemoreceptors) are complex proteins that sense the external environment and signal for flagella-mediated motility, serving as the GPS of the cell. In order to sense a myriad of physicochemical signals and adapt to diverse environmental niches, sensory regions of chemoreceptors are frenetically duplicated, mutated, or lost. Conversely, the chemoreceptor signaling region is a highly conserved protein domain. Extreme conservation of this domain is necessary because it determines very specific helical secondary, tertiary, and quaternary structures of the protein while simultaneously choreographing a network of interactions with the adaptor protein CheW and the histidine kinase CheA. This dichotomous …


Applications And Improvements In The Molecular Modeling Of Protein And Ligand Interactions, Jason Bret Harris Aug 2014

Applications And Improvements In The Molecular Modeling Of Protein And Ligand Interactions, Jason Bret Harris

Doctoral Dissertations

Understanding protein and ligand interactions is fundamental to treat disease and avoid toxicity in biological organisms. Molecular modeling is a helpful but imperfect tool used in computer-aided toxicology and drug discovery. In this work, molecular docking and structural informatics have been integrated with other modeling methods and physical experiments to better understand and improve predictions for protein and ligand interactions. Results presented as part of this research include:

1.) an application of single-protein docking for an intermediate state structure, specifically, modeling an intermediate state structure of alpha-1-antitrypsin and using the resulting model to virtually screen for chemical inhibitors that can …


Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce Aug 2013

Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce

Doctoral Dissertations

Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in rural or developing areas. Five oils extracted from Pittosporum resiniferum, Copaifera reticulata, and surrogate oils for Cymbopogon flexuosus, C. martinii, and Dictamnus albus in B20 blends were sent for ASTM International biodiesel testing and run in homogenous charge combustion ignition engines to determine combustion properties and emissions. All oils tested lowered cloud point. Oils derived from Copaifera reticulata also lowered indicated specific fuel consumption and had emissions similar to the ultra-low sulfur diesel control. Characterization …


Chromatin Insulators: Master Regulators Of The Eukaryotic Genome, Todd Andrew Schoborg Aug 2013

Chromatin Insulators: Master Regulators Of The Eukaryotic Genome, Todd Andrew Schoborg

Doctoral Dissertations

Proper organization of the chromatin fiber within the three dimensional space of the eukaryotic nucleus relies on a number of DNA elements and their interacting proteins whose structural and functional consequences exert significant influence on genome behavior. Chromatin insulators are one such example, where it is thought that these elements assist in the formation of higher order chromatin loop structures by mediating long-range contacts between distant sites scattered throughout the genome. Such looping serves a dual role, helping to satisfy both the physical constraints needed to package the linear DNA polymer within the small volume of the nucleus while simultaneously …


Functional Analysis Of Corazonin And Its Receptor In Drosophila Melanogaster, Kai Sha Aug 2013

Functional Analysis Of Corazonin And Its Receptor In Drosophila Melanogaster, Kai Sha

Doctoral Dissertations

Corazonin (Crz) is an amidated undecapeptide originally isolated from the American cockroach. It has been shown to affect diverse physiological functions in a species-specific manner. However, the functionality of Crz in Drosophila melanogaster has not yet been determined. To gain insight into the role of Crz signaling in vivo, Crz and CrzR null alleles were obtained by transposable element mobilization. Flies carrying a deficiency uncovering Crz and pr-set7 loci were generated via P-element excision, and the latter was rescued by wild-type pr-set7 transgene. A mutation of Crz receptor (CrzR) was generated by Minos-element mobilization from …


The N-Terminus Of The Saccharomyces Cerevisiae G Protein-Coupled Receptor Ste2p: Formation Of Dimer Interfaces And Negative Regulation, Mohammad Seraj Uddin Aug 2013

The N-Terminus Of The Saccharomyces Cerevisiae G Protein-Coupled Receptor Ste2p: Formation Of Dimer Interfaces And Negative Regulation, Mohammad Seraj Uddin

Doctoral Dissertations

G protein-coupled receptors (GPCRs), the largest family of membrane proteins on the cell surface, play essential roles in signal transduction in all eukaryotic organisms. These proteins are responsible for sensing and detecting a wide range of extracellular stimuli and translating them to intracellular responses. This signaling requires a tight control for receptor activation without which abnormal signal leads to diseases. In fact, malfunctions of these receptors are associated with numerous pathological conditions and currently an estimated 40-50% of therapeutic drugs are designed to target these receptors suggesting that further increases in understanding of GPCRs and the signaling pathways they initiate …


Role Of Retinoids In The Regulation Of Hepatic Glucose And Lipid Metabolism, Rui Li May 2013

Role Of Retinoids In The Regulation Of Hepatic Glucose And Lipid Metabolism, Rui Li

Doctoral Dissertations

The liver plays an important role in controlling glucose and lipid homeostasis. Metabolic abnormalities such as obesity and type 2 diabetes are often associated with profound changes in the expression of genes involved in hepatic glucose and lipid metabolism. Dietary nutrients provide us with macronutrients for energy and micronutrients for maintenance of general health. However, the effects of individual micronutrients on the development of metabolic diseases are unknown. Sterol regulatory element binding protein-1c (SREBP-1c) is the master regulator of fatty acid synthesis, and glucokinase (GK) is the key enzyme in glucose metabolism. Based on the preliminary results from our laboratory …


Experimental And Computational Analysis Of Chloroplast Transit Peptide Domain Architecture And Function, Prakitchai Chotewutmontri May 2013

Experimental And Computational Analysis Of Chloroplast Transit Peptide Domain Architecture And Function, Prakitchai Chotewutmontri

Doctoral Dissertations

The Majority of chloroplast proteins are nuclear-encoded and utilize an N-terminal transit peptide (TP) to target into chloroplasts via the general import pathway. Bioinformatic and proteomic analyses provide thousands of predicted TPs, which show low sequence similarity. How the common chloroplast translocon components recognize these diverse TPs is not well understood. Previous results support either sequence- or physicochemical-specific recognitions. To further address this question, a reverse sequence approach was utilized such that the reverse TP contains the same amino acid composition as wild-type TP but lack similar sequence motifs. Using both native and reverse TPs of the two well-studied precursors, …


Soybean Nodulin 26: A Channel For Water And Ammonia At The Symbiotic Interface Of Legumes And Nitrogen-Fixing Rhizobia Bacteria, Jin Ha Hwang May 2013

Soybean Nodulin 26: A Channel For Water And Ammonia At The Symbiotic Interface Of Legumes And Nitrogen-Fixing Rhizobia Bacteria, Jin Ha Hwang

Doctoral Dissertations

During the infection and nodulation of legume roots by soil bacteria of the Rhizobiaceae family, the invading endosymbiont becomes enclosed within a specialized nitrogen-fixing organelle known as the "symbiosome". In mature nodules the host infected cells are occupied by thousands of symbiosomes, which constitute the major organelle within this specialized cell type. The symbiosome membrane is the outer boundary of this organelle which controls the transport of metabolites between the symbiont and the plant host. These transport activities include the efflux of the primary metabolic product of nitrogen fixation and the uptake of dicarboxylates as an energy source to support …


Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham May 2013

Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham

Doctoral Dissertations

Historically, there has been tremendous synergy between biology and analytical technology, such that one drives the development of the other. Over the past two decades, their interrelatedness has catalyzed entirely new experimental approaches and unlocked new types of biological questions, as exemplified by the advancements of the field of mass spectrometry (MS)-based proteomics. MS-based proteomics, which provides a more complete measurement of all the proteins in a cell, has revolutionized a variety of scientific fields, ranging from characterizing proteins expressed by a microorganism to tracking cancer-related biomarkers. Though MS technology has advanced significantly, the analysis of complicated proteomes, such as …


Novel Constitutively Active Point Mutations In The Nh2 Domain Of Cxcr2 Capture The Receptor In Different Activation States, Giljun Park Dec 2010

Novel Constitutively Active Point Mutations In The Nh2 Domain Of Cxcr2 Capture The Receptor In Different Activation States, Giljun Park

Doctoral Dissertations

Chemokines are structurally and functionally related 8-10 kDa proteins defined by four conserved cysteine residues. They consist of a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and other cell types through binding to their respective chemokine receptor, a member of the GPCR family. Abnormal control of this system results in various diseases including tumorigenesis and cancer metastasis. Deregulation can occur when constitutively active mutant (CAM) chemokine receptors are locked in the “on” position. This can lead to cellular transformation/tumorigenesis. A viral CAM receptor, ORF74, that can cause tumors in humans, also has homology to …


Dynamics Of The Toc Gtpases: Modulation By Nucleotides And Transit Peptides Reveal A Mechanism For Chloroplast Protein Import, Lovett Evan Reddick May 2010

Dynamics Of The Toc Gtpases: Modulation By Nucleotides And Transit Peptides Reveal A Mechanism For Chloroplast Protein Import, Lovett Evan Reddick

Doctoral Dissertations

The chloroplast is the green organelle in the plant cell responsible for harvesting energy from sunlight and converting it into sugars and ATP. Origins of this organelle can be traced back to an endosymbiotic event in which a primitive eukaryotic cell capable of oxidative phosphorylation engulfed a free-living cyanobacterium capable of photosynthetic respiration (1). Immediately following this event the details are not clear, however what is known is that over the course of evolution, the engulfed cyanobacteria relinquished approximately 97% of its protein coding sequences to the host cell nucleus, thus making the newly formed chloroplast reliant on its host …


High Resolution X-Ray And Neutron Crystallographic Studies Of Escherichia Coli Dihydrofolate Reductase, Brad C. Bennett Dec 2005

High Resolution X-Ray And Neutron Crystallographic Studies Of Escherichia Coli Dihydrofolate Reductase, Brad C. Bennett

Doctoral Dissertations

Dihydrofolate Reductases (DHFRs) have been identified in nearly every proteome and are essential for most biosynthetic pathways involving one-carbon transfer reactions due to their recycling of tetrahydrofolate (THF). They catalyze the NADPH-dependent reduction of dihydrofolate (DHF), producing THF. Inhibition of DHFR ultimately depletes cellular pools of THF; causing a reduced supply of thymine nucleotides for DNA synthesis, resulting in genomic instability and cell death. Therefore, DHFRs remain important drug targets in antimicrobial and chemotherapeutic treatments. Despite exhaustive investigation of E. coli chromosomal DHFR, controversy persists over the dynamics of regulatory loops (the Met20, the βF-βG, and the βG-βH) and the …