Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Molecular Biology

Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero Apr 2023

Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero

Doctoral Dissertations

Nitrogen is essential for plant tissue growth but is often a limited resource in soils. Many legumes overcome this limitation by entering a symbiotic association with soil microbes, called rhizobia, which provide nitrogen to the plant while rhizobia receive fixed carbon. To successfully form a symbiosis, the host and symbiont exchange a series of molecular signals. One major obstacle during this interaction is the host's innate immune system, which becomes active upon rhizobial detection. It is therefore the main focus of this thesis to identify the mechanisms that modulate host immunity. In the subsequent chapters, we focus on a rhizobial …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni Jun 2022

Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni

Doctoral Dissertations

Caspases are cysteine aspartate proteases involved in various cellular pathways including apoptosis, inflammation, and neurodegeneration. Caspase-9 is classified as an initiator apoptotic caspase that is activated upon intrinsic stress. Caspase-9 is composed of two domains: an N- terminal CARD domain and a catalytic core domain. We have employed hydrogen deuterium exchange mass spectrometry (H/DX-MS) to determine the 1) dynamics of the full-length caspase- 9, 2) dynamic impacts on caspase-9 upon substrate-induced dimerization, and 3) regions involved in the CARD: catalytic core domains interactions. Upon intrinsic stress, caspase-9 activates executioners, procaspase-3 and -7 but not procaspase-6. We have employed site-directed mutagenesis …


Quantitative Imaging Of Tensile Forces At Cell-Cell Junction With Dna-Based Probes, Puspam Keshri Feb 2022

Quantitative Imaging Of Tensile Forces At Cell-Cell Junction With Dna-Based Probes, Puspam Keshri

Doctoral Dissertations

Mechanical forces are an integral part in biology, they regulate several cellular properties, such as morphology, proliferation, migration. These forces are also involved in receptor signaling and the differentiation of different cell types. Different proteins and biomolecules such as cadherin, integrin, notch proteins are essential elements of these processes. Measuring these intercellular forces are challenging considering the minimal intensity (piconewton-level) of these molecular forces. In our lab, we have developed a membrane DNA tension probe (MDTP) that uses a DNA hairpin module to sense tensile forces and has a lipid anchor to modify onto live-cell membranes. The programmability of DNA …


Understanding How Camkii Holoenzyme Dynamics Facilities Activation-Triggered Subunit Exchange, Ana P. Torres-Ocampo Oct 2021

Understanding How Camkii Holoenzyme Dynamics Facilities Activation-Triggered Subunit Exchange, Ana P. Torres-Ocampo

Doctoral Dissertations

Long-term memory and learning are still poorly understood from a molecular and cellular standpoint. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an oligomeric kinase that is involved in this remarkable process. However, the molecular details of its specific roles in these processes remains elusive. CaMKII activation-triggered subunit exchange presents a novel possible mechanism involved in long-term memory and learning by exchanging active subunits with other CaMKIIs. CaMKII subunit exchange also shows that exchanged CaMKIIs spread their phosphorylation state to newly synthesized CaMKIIs. This provides a long-lasting signal that might possibly be involved in long-term memory by escaping a cell’s …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Pharmacological Chaperoning Of Human Lysosomal Neuraminidase 1, Di Chu May 2021

Pharmacological Chaperoning Of Human Lysosomal Neuraminidase 1, Di Chu

Doctoral Dissertations

Human lysosomal neuraminidase 1 (hNEU1) is an exo-a-sialidase which cleaves a(2-3) and a(2-6) linked sialic acids on glycoproteins in the lysosome. Deficiency of hNEU1 in the lysosome results in sialidosis, a lysosomal storage disease. Currently there is no effective treatment for sialidosis, which leads to a rising interest in discovering potential therapies. Here we presented a small molecule, α-D-N-acetylneuraminic acid (NANA), increases the protein amount and activity of both wild-type hNEU1 and three different hNEU1 mutations found in sialidosis patients in our mammalian cell system, suggesting that NANA works as a potential pharmacological chaperone for hNEU1 and provides …


Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther Jul 2020

Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther

Doctoral Dissertations

Many legumes form a symbiosis with nitrogen-fixing bacteria found in the soil. This relationship is beneficial to both the plant and the bacteria; the plant receives nitrogen that is otherwise limited, and the bacteria receive fixed carbon. Upon sensing the bacteria, the plant forms a new organ (the nodule) where the bacteria are housed within the cells. Many genes are required for the proper formation and function of nodules; this dissertation is broadly focused on how genes required for nitrogen-fixing symbiosis are co-opted from other cellular processes and how they are specialized for symbiosis. Protein trafficking from the plant to …


Characterization Of Biodistribution Of Transferrin And Receptor Binding Mechanism By Mass Spectrometry, Hanwei Zhao Mar 2020

Characterization Of Biodistribution Of Transferrin And Receptor Binding Mechanism By Mass Spectrometry, Hanwei Zhao

Doctoral Dissertations

Protein-based therapeutics have emerged as a key driver of rapid growth in drug development pipelines. However, developing such protein drugs is not straightforward in most cases, the existence of physiological barriers greatly restricts the efficient delivery of many therapeutic molecules, and therefore limits their clinical applications. A promising way to address this challenge takes advantage of certain transport protein which can effectively across and enhance the permeability of these barriers, such as transferrin (Tf) which can be internalized by malignant cells and cross physiological barriers via transferrin receptor (TfR)-mediated endocytosis and transcytosis. However, developing such products is impossible without successfully …


Tpr-Containing Proteins Control Protein Organization And Homeostasis For The Endoplasmic Reticulum, Jill Bradley-Graham Mar 2020

Tpr-Containing Proteins Control Protein Organization And Homeostasis For The Endoplasmic Reticulum, Jill Bradley-Graham

Doctoral Dissertations

The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into several functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Nine TPR-containing proteins have been shown to localize to the ER and control protein organization and …


Rna-Seq And Mechanistic Enzymology Confirm Rna Self-Templated Extension By T7 Rna Polymerase And Suggest Novel Approaches Towards Improved In Vitro Rna Synthesis, Yasaman Gholamalipour Oct 2019

Rna-Seq And Mechanistic Enzymology Confirm Rna Self-Templated Extension By T7 Rna Polymerase And Suggest Novel Approaches Towards Improved In Vitro Rna Synthesis, Yasaman Gholamalipour

Doctoral Dissertations

Synthetic RNA is widely used in basic science, nanotechnology and therapeutics research. The vast majority of this RNA is synthesized in vitro by T7 RNA polymerase. However, the desired RNA is generally contaminated with products longer and shorter than the DNA-encoded product. To better understand these undesired byproducts and the processes that generate them, we analyzed in vitro transcription reactions using RNA-Seq as a tool. The results unambiguously confirmed that product RNA rebinds to the polymerase and self-primes (in cis) generation of a hairpin duplex, a process that favorably competes with promoter driven synthesis under high yield reaction conditions. …


The Spatial Organization Of Mycobacterial Membrane, Julia Puffal Jul 2019

The Spatial Organization Of Mycobacterial Membrane, Julia Puffal

Doctoral Dissertations

Mycobacteria comprises a large group of organisms including the pathogenic species Mycobacterium tuberculosis, the causative agent of tuberculosis. A fast- growing saprophytic member of this genus, however, Mycobacterium smegmatis, is oftentimes used as a model organism for the pathogenic species. With a unique cell envelope architecture and unconventional polar growth, spatial coordination of cell envelope biosynthesis is vital for proper assembly of this complex structure. Here, we provide a comprehensive overview of known lateral heterogeneities in mycobacterial plasma membrane, with a particular focus on the intracellular membrane domain (IMD), a spatially distinct region of the plasma membrane with diverse functions. …


Probing Apoptotic Caspase Allostery And Exosite Interactions For Alternative Regulation, Derek J. Macpherson Mar 2019

Probing Apoptotic Caspase Allostery And Exosite Interactions For Alternative Regulation, Derek J. Macpherson

Doctoral Dissertations

Programmed cell death, or apoptosis is a critical homeostatic pathway that monitors the balance of cell life and death. Apoptosis is regulated by a class of enzymes known as the cysteine aspartic proteases, or the caspases. The 12 human caspases that play important roles in the progression and regulation of apoptosis and inflammation. Caspases are tightly regulated by numerous factors including enzymatic activation, post-translational modifications, metal ligand binding, and protein modulation. Aberrant caspase activation and regulation has been implicated in the progression of numerous diseases such as proliferative diseases and neurodegeneration. The deeply entwined nature of caspases and apoptosis makes …


Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang Mar 2019

Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang

Doctoral Dissertations

The use of pore-forming proteins (PFPs) in nanopore sensing has been fruitful largely due to their nanoscale size and the ease with which protein nanopores can be manipulated and consistently reproduced at a large scale. Nanopore sensing relies heavily on a steady ionic current afforded by rigid nanopores, as the change in current is indicative of analyte detection, revealing characteristics of the analyte such as its relative size, concentration, and charge, as well as the nanopore:analyte interaction. Rigid PFPs have been used in applications such as DNA sequencing, kinetic studies, analyte discrimination, and protein conformation dynamics at the single-molecule level. …


Enhancing Nanopore Based Biosensening Technology Using Pore Forming Proteins, Christina M. Chisholm Mar 2019

Enhancing Nanopore Based Biosensening Technology Using Pore Forming Proteins, Christina M. Chisholm

Doctoral Dissertations

Pore forming proteins (PFPs) are membrane channels that are essential for various biological processes. For example, some PFPs act as gatekeepers of the cell, controlling the traffic of ions and macromolecules flowing into and out of cells; while others are involved in causing cell death (Reiner et al., 2012). Our fundamental understanding of PFPs determines our ability to employ these proteins for use in biomedical research and nanopore technology. Given their nanoscale dimensions, reproducibility and functionality these PFPs are widely used in the growing field of nanopore technology, particularly nanopore sensing (Reiner et al., 2012; Feng et al., 2015). These …


Identifying Functional Components Of The Endoplasmic Reticulum Quality Control And Degradation Factor Edem1, Lydia Lamriben Nov 2018

Identifying Functional Components Of The Endoplasmic Reticulum Quality Control And Degradation Factor Edem1, Lydia Lamriben

Doctoral Dissertations

The ER Degradation-Enhancing Mannosidase-Like protein 1 (EDEM1) is a critical endoplasmic reticulum (ER) quality control factor involved in identifying and directing non-native proteins to the ER-associated protein degradation (ERAD) pathway. However, its recognition and binding properties have remained enigmatic since its discovery. Here we provide evidence for an additional redox-sensitive interaction between EDEM1 and Z/NHK that requires the presence of the single Cys on the α-1 antitrypsin ERAD clients. Moreover, this Cys-dependent interaction is necessary when the proteins are isolated under stringent detergent conditions, ones in which only strong covalent interactions can be sustained. This interaction is inherent to the …


Characterization Of She1 Spindle Role Using Ceullular, Biochemical, And Biophysical Methods, Yili Zhu Jul 2018

Characterization Of She1 Spindle Role Using Ceullular, Biochemical, And Biophysical Methods, Yili Zhu

Doctoral Dissertations

During development, metaphase spindles undergo large movement and/or rotation to determine the cell division axis. While it has been shown that spindle translocation is achieved by astral microtubules pulling and/or pushing the cortex, how metaphase spindle stability is maintained during translocation remains not fully understood. In budding yeast, our lab has previously proposed a model for spindle orientation wherein the mitotic spindle protein She1 promotes spindle translocation across the bud neck by polarizing cortical dynein pulling activity on the astral microtubules. Intriguingly, She1 exhibits dominant spindle localization throughout the cell cycle. However, whether She1 has any additional role on the …


Extrinsic And Intrinsic Factors In Liver Development, Amrita Palaria Jul 2018

Extrinsic And Intrinsic Factors In Liver Development, Amrita Palaria

Doctoral Dissertations

Liver is the largest internal organ of the human body. It performs a multitude of functions. Therefore, it is provided with a huge regenerative capacity however, because of the same reason it is also prone to various diseases. Hence, it is essential to understand liver development in order to understand liver regeneration and liver diseases to provide better therapeutic targets and solutions. Liver development is orchestrated by a variety of intrinsic and extrinsic factors. The major focus of this dissertation thesis is to elucidate the role of BMP signals and YY1/VEGFA regulated signals in liver development. Liver organogenesis initiates with …


Examining Shsp-Substrate Capture And Chaperone Network Coordination Through Cross-Linking, Keith Ballard Jul 2018

Examining Shsp-Substrate Capture And Chaperone Network Coordination Through Cross-Linking, Keith Ballard

Doctoral Dissertations

Small heat shock proteins (sHSPs) and related α-crystallins are virtually ubiquitous, ATP-independent molecular chaperones linked to protein misfolding diseases. They comprise a conserved core α-crystallin domain (ACD) flanked by an evolutionarily variable N-terminal domain (NTD) and semi-conserved C-terminal extension/domain (CTD). They are capable of binding up to an equal mass of unfolding protein, forming large, heterogeneous sHSP-substrate complexes that coordinate with ATP-dependent chaperones for refolding. To derive common features of sHSP-substrate recognition, I compared the chaperone activity and specific sHSP-substrate interaction sites for three different sHSPs from Arabidopsis (At17.6B), pea (Ps18.1) and wheat (Ta16.9), for which the atomic solution-state structures …


Clpxp Functions In Caulobacter As A Universal And Species-Specific Protease, Robert Vass Mar 2018

Clpxp Functions In Caulobacter As A Universal And Species-Specific Protease, Robert Vass

Doctoral Dissertations

Proteolysis shapes many aspects of cellular survival, including protein quality control and cellular signaling. Powered proteolysis couples ATP hydrolysis with a degradation force that actively probes and interrogates the protein population. ClpXP, exemplifies a conserved two-part protease system charged with powered proteolysis. This protease exists as a regulatory element (ClpX), and a compartmentalized, self-contained peptidase element (ClpP). In Caulobacter crescentus, ClpXP degradation plays a crucial role maintaining proteins that exhibit proper activity, and also triggers the start of cellular differentiation. Substrate elimination requires shared aspects of the protease from both quality control and precision protein destruction functions. Here, the regulatory …


The Role Of The Metallochaperone Hypa In The Acid Survival And Activities Of Nickel Enzymes In Helicobacter Pylori, Heidi Hu Mar 2018

The Role Of The Metallochaperone Hypa In The Acid Survival And Activities Of Nickel Enzymes In Helicobacter Pylori, Heidi Hu

Doctoral Dissertations

Helicobacter pylori is a bacterium that has colonized the human gastric mucosa of over 50% of the world population. Persistent infection can cause gastritis, peptic ulcers, and cancers. The ability of H. pylori to colonize the acidic environment of the human stomach is dependent on the activity of the nickel containing enzymes, urease and NiFe-hydrogenase. The nickel metallochaperone, HypA, was previously shown to be required for the full activity of both enzymes. In addition to a Ni-binding site, HypA also contains a structural Zn site, which has been characterized to alter its averaged structure depending on pH and the presence …


The Heat Shock Cognate 70 Protein (Hsc70) Is A Novel Target For Nobiletin In Colon Cancer Cells, Zili Gao Mar 2018

The Heat Shock Cognate 70 Protein (Hsc70) Is A Novel Target For Nobiletin In Colon Cancer Cells, Zili Gao

Doctoral Dissertations

Nobiletin (NBT) is a unique flavonoid mainly found in citrus fruits, and has been reported to inhibit colon carcinogenesis in multiple rodent models. However, the direct molecular targets of NBT are unknown. Heat shock cognate 70 protein (HSC70) contributes to cancer cell survival and resistance to chemotherapies, thereby the inhibition of HSC70 is a promising strategy in cancer chemoprevention. Using affinity chromatography, proteomics analysis and computer modeling, we demonstrated that NBT bound to HSC70 at its ATP-binding site and specifically inhibited its ATPase activity. The association between HSC70 and HSP90 is critical for the stability of their client proteins, which …


Dissecting Molecular Pathways That Ensure Proper Chromosome Segregation And Cell Division, Anna Ye Nov 2017

Dissecting Molecular Pathways That Ensure Proper Chromosome Segregation And Cell Division, Anna Ye

Doctoral Dissertations

Equal segregation of the genome is a prerequisite for cell survival. During cell division the duplicated DNA is compacted into chromosomes and a multi-protein macrostructure, known as the kinetochore (Kt), is assembled on each copy of compacted DNA. Simultaneously, the mitotic spindle, which is made up of microtubules (MTs), is built to facilitate the equal distribution of the chromosomes between the resulting daughter cells. Kinetochores mediate the interaction between the MTs and the chromosomes, properly positioning them for segregation. To ensure that the DNA is equally divided in every cell division, cells have built a surveillance system to detect any …


Regulated Proteolysis Of Dnaa Coordinates Cell Growth With Stress Signals In Caulobacter Crescentus, Jing Liu Nov 2017

Regulated Proteolysis Of Dnaa Coordinates Cell Growth With Stress Signals In Caulobacter Crescentus, Jing Liu

Doctoral Dissertations

DNA replication is an essential process in all domains of life. Replication must be precisely regulated, especially at the step of initiation. In bacteria, the replication initiator DnaA is regulated by multiple post-translational regulations to ensure timely replication. Caulobacter crescentus has the most strict replication regulation that DNA only replicates once per cell cycle, and proteolysis of DnaA identified in this species is the only irreversible way to inhibit DnaA, suggesting it might be pivotal to restricting DNA replication. However, the responsible protease(s) and mechanism for its degradation remain unclear since its first discovery in 2005. In this thesis, I …


Pore Forming Protein Assembly And The Use In Nanopore Sensing: A Study On E. Coli Proteins Clya And Ompg, Monifa Fahie Nov 2017

Pore Forming Protein Assembly And The Use In Nanopore Sensing: A Study On E. Coli Proteins Clya And Ompg, Monifa Fahie

Doctoral Dissertations

Pore forming proteins are typically the proteins that form channels in membranes. They have several roles ranging from molecule transport to triggering the death of a cell. This work focuses on two E. coli pore forming proteins that have vastly differing roles in nature. Outer membrane protein G (OmpG) is an innocuous β-barrel porin while Cytolysin A (ClyA) is an α-helical pore forming toxin. For OmpG we probed its potential to be a nanopore sensor for protein detection and quantification. A small high affinity ligand, biotin, was covalently attached to loop 6 of OmpG and used to capture biotin-binding proteins. …


The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas Jul 2017

The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas

Doctoral Dissertations

The fact that plants cannot use nitrogen in the gaseous form makes them dependent on the levels of usable nitrogen forms in the soil. Legumes overcome nitrogen limitation by entering a symbiotic association with rhizobia, soil bacteria that convert atmospheric nitrogen into usable ammonia. In root nodules, bacteria are internalized by host plant cells inside an intracellular compartment called the symbiosome where they morphologically differentiate into nitrogen-fixing forms by symbiosome-secreted host proteins. In this project, I explained the host proteins required to maintain bacterial symbionts and described their delivery to the symbiosome. I showed that the SYNTAXIN 132 (SYP132) gene …


Adaptors At Work: Regulation Of Bacterial Proteolysis By Adaptor Hierarchies, Kamal Joshi Jul 2017

Adaptors At Work: Regulation Of Bacterial Proteolysis By Adaptor Hierarchies, Kamal Joshi

Doctoral Dissertations

Regulated protein degradation is essential for all life. Bacteria use energy-dependent proteases to regulate protein degradation. Recognition of a substrate is enabled by the inherent specificity of the protease and by the use of adaptor proteins that widen the spectrum of recognized substrates. In Caulobacter crescentus, the timed destruction of many regulators including CtrA by the ClpXP protease drives cell cycle progression. Although, in a test tube, ClpXP can degrade CtrA by itself and does not need any helping factors, additional factors such as CpdR, RcdA and PopA are required in vivo. Understanding how these factors modulate protease …


Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau Jul 2016

Control Of Proteolysis During The Caulobacter Cell Cycle, Joanne Lau

Doctoral Dissertations

Intracellular protein destruction is a carefully coordinated and timed regulatory mechanism that cells utilize to modulate growth, adaptation to environmental cues, and survival. In Caulobacter crescentus, a bacterium known for studies of bacterial cell division cycle, the response regulator CpdR couples phosphorylation events with the AAA+ protease ClpXP to provide punctuated degradation of crucial substrates involved in cell cycle regulation. CpdR functions like an adaptor to alter substrate choice by ClpXP, however it remains unclear how CpdR influences its multiple targets. In this thesis, we show that, unlike canonical ClpXP adaptors, CpdR alone does not strongly bind its substrate. …


Exploring The Impact Of The E. Coli Proteostasis Network On The Folding Fate Of Proteins With Different Intrinsic Biophysical Properties, Kristine Faye R. Pobre Mar 2016

Exploring The Impact Of The E. Coli Proteostasis Network On The Folding Fate Of Proteins With Different Intrinsic Biophysical Properties, Kristine Faye R. Pobre

Doctoral Dissertations

The three-dimensional (3D) native structure of most proteins is crucial for their functions. Despite the complex cellular environment and the variety of challenges that proteins experience as they fold, proteins can still fold to their native states with high fidelity. The reason for this is the presence of the cellular proteostasis network (PN), consisting of molecular chaperones and degradation enzymes, that collaborates to maintain proteostasis, in which the necessary levels of functional proteins are optimized. Although extensive research has been carried out on the mechanisms of individual components of the proteostasis network, little is known about how these components contribute …


New Insights Into The Role Of The Udp-Glucose: Glycoprotein Glucosyltransferase 1 In The Endoplasmic Reticulum Quality Control, Abla Tannous Nov 2015

New Insights Into The Role Of The Udp-Glucose: Glycoprotein Glucosyltransferase 1 In The Endoplasmic Reticulum Quality Control, Abla Tannous

Doctoral Dissertations

The UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a central quality control factor in the Endoplasmic Reticulum (ER). It surveys the folding status of proteins in the ER and redirects them, via its reglucosylation activity, to bind to the ER carbohydrate binding (lectin) chaperones calreticulin (CRT) and calnexin (CNX). However, the cellular mechanism of UGT1 is not completely understood. Using a cell based reglucosylation assay, we found that UGT1 reglucosylated proteins that eventually fold. This modification was transient and resulted in delay of protein trafficking in the secretory pathway and prolonged binding to lectin chaperones in the ER. In addition, terminally misfolded …