Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Characterization Of Jabba, A Ricin-Resistant Mutant Of Leishmania Donovani, Megan Rhea Phillips Jan 2014

Characterization Of Jabba, A Ricin-Resistant Mutant Of Leishmania Donovani, Megan Rhea Phillips

Theses and Dissertations--Molecular and Cellular Biochemistry

The abundant cell-surface lipophosphoglycan (LPG) of Leishmania parasites plays a central role throughout the eukaryote’s life cycle. A number of LPG-defective mutants and their complementing genes have been isolated and have proven invaluable in assessing the importance of LPG and related glycoconjugates in parasite virulence. While ricin agglutination selection protocols frequently result in lpg- mutants, one L. donovani variant we isolated, named JABBA, was found to be lpg+. Procyclic (logarithmic) JABBA expresses significant amounts of a large-sized LPG, larger than observed from procyclic wild-type but similar in size to LPG from wild-type from metacyclic (stationary) phase.

Structural analysis of …


Molecular Mechanism Of Human Mismatch Repair Initiation, Sanghee Lee Jan 2014

Molecular Mechanism Of Human Mismatch Repair Initiation, Sanghee Lee

Theses and Dissertations--Nutritional Sciences

DNA mismatch repair (MMR) is a highly conserved pathway that maintains genomic stability primarily by correcting mismatches generated during DNA replication. MMR deficiency leads to microsatellite instability (MSI), which is a hallmark of HNPCC (Hereditary Nonpolyposis Colorectal Cancer). Human mismatch repair is initiated by MutSα, a heterodimer of MSH2 and MSH6 subunits. Mismatch binding by MutSα triggers a series of downstream MMR events including interacting and communicating with other MMR proteins. The ATPase domain of MutSα is situated in the C-termini of its both subunits, and ATP binding is required for dissociation of MutSα from a mismatch. In eukaryotic cells, …


Structural Mechanisms Of Glucan Phosphatase Activity In Starch Metabolism, David A. Meekins Jan 2014

Structural Mechanisms Of Glucan Phosphatase Activity In Starch Metabolism, David A. Meekins

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch is a water-insoluble glucose biopolymer used as an energy cache in plants and is synthesized and degraded in a diurnal cycle. Reversible phosphorylation of starch granules regulates the solubility and, consequentially, the bioavailability of starch glucans to degradative enzymes. Glucan phosphatases release phosphate from starch glucans and their activity is essential to the proper diurnal metabolism of starch. Previously, the structural basis of glucan phosphatase activity was entirely unknown. The work in this dissertation outlines the structural mechanism of activity of two plant glucan phosphatases called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). The crystal structures of SEX4 …


Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker Jan 2014

Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker

Theses and Dissertations--Molecular and Cellular Biochemistry

Neuropilin (Nrp) is an essential cell surface receptor with dual functionality in the cardiovascular and nervous systems. The first identified Nrp-ligand family was the Semaphorin-3 (Sema3) family of axon repulsion molecules. Subsequently, Nrp was found to serve as a receptor for the vascular endothelial growth factor (VEGF) family of pro-angiogenic cytokines. In addition to its physiological role, VEGF signaling via Nrp directly contributes to cancer stemness, growth, and metastasis. Thus, the Nrp/VEGF signaling axis is a promising anti-cancer therapeutic target. Interestingly, it has recently been shown that Sema3 and VEGF are functionally opposed to one another, with Sema3 possessing potent …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …


Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell Jan 2014

Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell

Theses and Dissertations--Plant and Soil Sciences

Squalene synthase (SS) is an essential enzyme in eukaryotic systems responsible for an important branch point in isoprenoid metabolism that leads to sterol formation. The mechanistic complexity of SS has made it a difficult enzyme to study. The green alga Botryococcus braunii race B possesses several squalene synthase-like (SSL) enzymes that afford a unique opportunity to study the complex mechanism of triterpene biosynthesis. SSL-1 catalyzes presqualene diphosphate (PSPP) formation, which can either be converted to squalene by SSL-2 or botryococcene by SSL-3. A rationally designed mutant study of B. braunii squalene synthase (BbSS) and SSL-3 was conducted to understand structure-function …


Stability Studies Of Membrane Proteins, Cui Ye Jan 2014

Stability Studies Of Membrane Proteins, Cui Ye

Theses and Dissertations--Chemistry

The World Health Organization has identified antimicrobial resistance as one of the top three threats to human health. Gram-negative bacteria such as Escherichia coli are intrinsically more resistant to antimicrobials. There are very few drugs either on the market or in the pharmaceutical pipeline targeting Gram-negative pathogens. Two mechanisms, the protection of the outer membrane and the active efflux by the multidrug transporters, play important roles in conferring multidrug resistance to Gram-negative bacteria. My work focuses on two main directions, each aligning with one of the known multidrug resistance mechanisms.

The first direction of my research is in the area …