Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Selected Works

Kyle S Landry

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Characterization Of A Recently Purified Thermophilic Dnase From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin Jul 2014

Characterization Of A Recently Purified Thermophilic Dnase From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin

Kyle S Landry

A newly isolated thermophilic fungus was found to produce a partially inducible extracellular DNase. This manuscript focuses on the characterization of this novel thermophilic DNase in terms of optimal enzyme conditions, molecular weight, and certain kinetic properties. The DNase was found to be inactivated by the presence of EDTA demonstrating its dependence on metal cofactors for activity. Maximum activity occurred at pH 6.0 with no activity at pH 2.0 or 10.0. The optimal temperature for the purified DNase was 65 °C. The thermophilic DNase was found to be an exonuclease with an estimated molecular weight of 56 kDa.


Purification Of An Inducible Dnase From A Thermophilic Fungus, Kyle Landry, Andrea Vu, Robert Levin Dec 2013

Purification Of An Inducible Dnase From A Thermophilic Fungus, Kyle Landry, Andrea Vu, Robert Levin

Kyle S Landry

The ability to induce an extracellular DNase from a novel thermophilic fungus was studied and the DNAse purified using both traditional and innovative purification techniques. The isolate produced sterile hyphae under all attempted growing conditions, with an average diameter of 2 μm and was found to have an optimal temperature of 45 °C and a maximum of 65 °C. Sequencing of the internal transcribed region resulted in a 91% match with Chaetomium sp., suggesting a new species, but further clarification on this point is needed. The optimal temperature for DNase production was found to be 55 °C and was induced by the …