Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Molecular Biology

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Generating A Colorimetric Ssa4 Transcript Export Reporter For Multicopy Suppression Screen In S. Cerevisiae, Zaid Hatem Apr 2022

Generating A Colorimetric Ssa4 Transcript Export Reporter For Multicopy Suppression Screen In S. Cerevisiae, Zaid Hatem

Belmont University Research Symposium (BURS)

The export of mRNA from the nucleus to the cytoplasm is a regulatory point that is essential to the pathway of gene expression in eukaryotic cells. The export of mRNA transcripts is mediated through selective doorways called the nuclear pore complexes (NPC). Additionally, there are proteins associated with the nuclear pore complex that assist in facilitating the export. This includes association with the export receptor, Mex67, which binds to the transcript and ferries it through NPCs. During cellular stress, such as heat shock, the export of housekeeping mRNA transcripts is halted, forcing these transcripts to remain inside the nucleus and …


Rna Polymerase Binding Protein A (Rbpa) Regulation Of Mycobacteria Transcription And Sensitivity To Fidaxomicin, Jerome Prusa Aug 2021

Rna Polymerase Binding Protein A (Rbpa) Regulation Of Mycobacteria Transcription And Sensitivity To Fidaxomicin, Jerome Prusa

Arts & Sciences Electronic Theses and Dissertations

Mycobacterium tuberculosis is the causative agent of the disease tuberculosis (TB) and remains one of the deadliest microorganisms on the planet. The effort to eradicate M. tuberculosis would benefit from the development of novel therapeutics, which requires a detailed understanding of M. tuberculosis physiology. Like all living organisms, M. tuberculosis gene expression requires transcription. Transcription in the phylum Actinobacteria, which includes mycobacteria, is unique because it includes RNA Polymerase Binding Protein A (RbpA) that is essential in both M. tuberculosis and the nonpathogenic model organism Mycobacterium smegmatis. RbpA increases the housekeeping A and housekeeping like B interactions with the RNA …


Investigating The Redox Sensitivity Of Mitf Splice Variants, Rachel Berryman May 2020

Investigating The Redox Sensitivity Of Mitf Splice Variants, Rachel Berryman

Senior Theses

Within pigment-producing cells known as melanocytes, the transcription factor MITF is intimately involved in regulating genes associated with cell cycle maintenance and melanocyte differentiation. Research, however, has provided conflicting results on the relationship between the expression levels of MITF and melanocyte cell fate. To complicate matters, two splice variants of MITF exist, differing by only 18 base pairs. These variants have been observed at variable levels of expression in melanocyte and melanoma cells, raising the question as to their functional purpose. Building upon previous research by the Leachman/Cassidy lab that identified the redox sensitivity of MITF while additionally establishing a …


Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia Jan 2020

Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia

Wayne State University Dissertations

Rat1 is a 5′→3′ exoribonuclease in budding yeast belonging to the XRN-family of nucleases. It is a highly conserved protein with homologs being present in fission yeast, flies, worms, mice and humans. Rat1 and its homolog in metazoan have been shown to function in multiple facets of RNA metabolism. In this study, we report a novel role of Rat1 in splicing of pre-mRNA in budding yeast. In the absence of the functional Rat1 in the nucleus, an increase in the level of unspliced transcripts was observed in yeast cells. Strand-specific TRO analysis revealed that the accumulation of unspliced transcripts upon …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho May 2019

Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho

Philippe T. Georgel

Transcription in the human immunodeficiency virus type 1 (HIV-1) retrovirus is regulated by binding the viral Tat protein (trans-acting transcriptional activator) to the trans-activation response (TAR) RNA sequence. Here, vacuum UV circular dichroism (VUV-CD) is used to study the structure of TAR and its complex with two peptide fragments that are important for Tat binding to TAR. The VUV-CD spectrum of TAR is typical of A-form RNA and is minimally perturbed when bound to either the short or the long Tat peptide. The CD spectra ofthe complexes indicate an extended structure in the argnine-rich region of Tat from amino acid …


Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods Jan 2019

Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods

Legacy Theses & Dissertations (2009 - 2024)

DksA is a global transcription factor that binds RNAP directly to regulate the expression of many genes and operons, including ribosomal RNA, in a ppGpp-dependent or ppGpp–independent manner. It is also involved in facilitating the process of DNA replication by removing stalled transcription elongation complexes that could block the progress of the replication fork. In addition, DksA is important for colonization, establishment of biofilms, and pathogenesis. In order to sustain these various functions, an adequate level of cellular DksA is required. This work tested the hypothesis that the E. coli dksA is substantially regulated at the level of transcription. Using …


Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri Jul 2018

Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri

Dissertations & Theses (Open Access)

A limited pool of proteins attains vast functional repertoire due to posttranslational modifications (PTMs). Arginine methylation is a common posttranslational modification, which is catalyzed by a family of nine protein arginine methyltransferases or PRMTs. These enzymes deposit one or two methyl groups to the nitrogen atoms of arginine side-chains. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the …


Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud May 2017

Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud

Chancellor’s Honors Program Projects

No abstract provided.


Significance Of Pten Phosphorylation And Its Nuclear Function In Lung Cancer, Prerna Malaney Nov 2016

Significance Of Pten Phosphorylation And Its Nuclear Function In Lung Cancer, Prerna Malaney

USF Tampa Graduate Theses and Dissertations

Phosphorylation mediated inactivation of PTEN leads to multiple malignancies with increased severity. However, the consequence of such inactivation on downstream functions of PTEN are poorly understood. Therefore, the objective of my thesis is to ascertain the molecular mechanisms by which PTEN phosphorylation drives lung cancer. PTEN phosphorylation at the C-terminal serine/threonine cluster abrogates its tumor suppressor function. Despite the critical role of the PTEN C-tail in regulating its function, the crystal structure of the C-tail remains unknown. Using bioinformatics and structural analysis, I determined that the PTEN C-tail is an intrinsically disordered region and is a hot spot for post-translational …


Regulation Of Saga By The N-Terminus Of Spt7 In Saccharomyces Cerevisiae, Dominik Dobransky Aug 2014

Regulation Of Saga By The N-Terminus Of Spt7 In Saccharomyces Cerevisiae, Dominik Dobransky

Electronic Thesis and Dissertation Repository

Spt7 is a 1,332 residue protein critical for maintaining structural integrity of the SAGA complex. I demonstrated that the extreme N-terminus of Spt7 plays an important role in SAGA function. Deletion of the first 73 (Spt773-1332) and 121 (Spt7121-1332) N- terminal residues resulted in slow growth, decreased transcriptional activation at PHO5 and INO1, and a partial decrease in acetylation at lysine 18 of histone H3 at PHO5. The Spt7121-1332 mutant did not affect Spt7’s association with Gcn5 or Tra1, or its localization within the cell. Mutation of the first four positively charged residues …


Chromatin Insulators: Master Regulators Of The Eukaryotic Genome, Todd Andrew Schoborg Aug 2013

Chromatin Insulators: Master Regulators Of The Eukaryotic Genome, Todd Andrew Schoborg

Doctoral Dissertations

Proper organization of the chromatin fiber within the three dimensional space of the eukaryotic nucleus relies on a number of DNA elements and their interacting proteins whose structural and functional consequences exert significant influence on genome behavior. Chromatin insulators are one such example, where it is thought that these elements assist in the formation of higher order chromatin loop structures by mediating long-range contacts between distant sites scattered throughout the genome. Such looping serves a dual role, helping to satisfy both the physical constraints needed to package the linear DNA polymer within the small volume of the nucleus while simultaneously …


Human Adenovirus E1a Binds And Retasks Cellular Hbre1, Blocking Interferon Signalling And Activating Virus Early Gene Transcription, Gregory J. Fonseca Jun 2013

Human Adenovirus E1a Binds And Retasks Cellular Hbre1, Blocking Interferon Signalling And Activating Virus Early Gene Transcription, Gregory J. Fonseca

Electronic Thesis and Dissertation Repository

Upon infection, human adenovirus (HAdV) must block interferon signaling and activate the expression of its early genes to reprogram the cellular environment to support virus replication. During the initial phase of infection, these processes are orchestrated by the first HAdV gene expressed during infection, early region 1A (E1A). E1A binds and appropriates components of the cellular transcriptional machinery to modulate cellular gene transcription and activate viral early genes transcription. We have identified hBre1/RNF20 as a novel target of E1A. hBre1 is an E3 ubiquitin ligase which acts with the Ube2b E2 conjugase and accessory factors RNF40 and WAC1 to monoubiquitinate …


Trim24-Regulated Estrogen Response Is Dependent On Specific Histone Modifications In Breast Cancer Cells, Teresa T. Yiu Dec 2012

Trim24-Regulated Estrogen Response Is Dependent On Specific Histone Modifications In Breast Cancer Cells, Teresa T. Yiu

Dissertations & Theses (Open Access)

In this dissertation, I discovered that function of TRIM24 as a co-activator

of ERα-mediated transcriptional activation is dependent on specific histone

modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first

part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated

histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription.

Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of

TRIM24-regulated ERα target genes is greatly impaired. Importantly, I

demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen

responsive elements (EREs) in a time-dependent manner upon estrogen

induction, and depletion of their expression exert corresponding time-dependent

effect …


Prevalence And Physiological Significance Of Gene Looping In Saccharomyces Cerevisiae, Banupriya Mukundan Jan 2012

Prevalence And Physiological Significance Of Gene Looping In Saccharomyces Cerevisiae, Banupriya Mukundan

Wayne State University Dissertations

My Ph.D. dissertation work is focused on studying the role of promoter-bound transcription initiation factors involved in gene looping. In this study we showed that the RNAP II subunit Rpb4 has a significant effect on termination of transcription. Gene looping is disrupted in the absence of Rpb4. Rpb4 shows a strong physical interaction with the Mediator subunit Srb5. Mediator subunit Srb5 crosslinked to the 5' and 3' ends of INO1 and CHA1 genes and is required for proper termination of transcription of these genes. Srb5 affected termination of transcription through its interaction with the CF1 complex. Srb5 interaction with the …


Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho Oct 1992

Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho

Biological Sciences Faculty Research

Transcription in the human immunodeficiency virus type 1 (HIV-1) retrovirus is regulated by binding the viral Tat protein (trans-acting transcriptional activator) to the trans-activation response (TAR) RNA sequence. Here, vacuum UV circular dichroism (VUV-CD) is used to study the structure of TAR and its complex with two peptide fragments that are important for Tat binding to TAR. The VUV-CD spectrum of TAR is typical of A-form RNA and is minimally perturbed when bound to either the short or the long Tat peptide. The CD spectra ofthe complexes indicate an extended structure in the argnine-rich region of Tat from amino acid …