Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Apr 2021

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. We have shown that this 38 kDa full-length Par-4 (Fl-Par-4) protein is predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate a 24 kDa functionally active cleaved Par-4 (cl-Par-4) fragment. The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells. Our laboratory is interested in how the disorder-order balance within Fl-Par-4 and cl-Par-4 may be related to the balance between cell survival and cell death. Currently, we are using biophysical techniques such as circular …


Ph-Induced Folding Of The Caspase-Cleaved Par-4 Tumor Suppressor: Evidence Of Structure Outside Of The Coiled Coil Domain, Andrea M. Clark, Komala Ponniah, Meghan S. Warden, Emily M. Raitt, Andrea C. Yawn, Stephen M. Pascal Dec 2018

Ph-Induced Folding Of The Caspase-Cleaved Par-4 Tumor Suppressor: Evidence Of Structure Outside Of The Coiled Coil Domain, Andrea M. Clark, Komala Ponniah, Meghan S. Warden, Emily M. Raitt, Andrea C. Yawn, Stephen M. Pascal

Chemistry & Biochemistry Faculty Publications

Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer’s disease. Cleavage of Par-4 by caspase-3 activates tumor suppression via formation of an approximately 25 kDa fragment (cl-Par-4) that enters the nucleus and inhibits Bcl-2 and NF-ƙB, which function in pro-survival pathways. Here, we have investigated the structure of cl-Par-4 using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and intrinsic tyrosine fluorescence. The results demonstrate pH-dependent folding of cl-Par-4, …