Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

DNA

Series

Discipline
Institution
Publication Year
Publication
File Type

Articles 31 - 50 of 50

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Real-Time Qpcr Assay Development For Detection Of Bacillus Thuringiensis And Serratia Marcescens Dna And The Influence Of Complex Microbial Community Dna On Assay Sensitivity, Jonathan Segal Nov 2013

Real-Time Qpcr Assay Development For Detection Of Bacillus Thuringiensis And Serratia Marcescens Dna And The Influence Of Complex Microbial Community Dna On Assay Sensitivity, Jonathan Segal

FIU Electronic Theses and Dissertations

Real-time quantitative polymerase chain reaction (real-time qPCR) assays are an effective technique to detect biological warfare agents and surrogate organisms. In my study, primers were designed to detect chromosomal DNA of biological warfare agent surrogates B. thuringiensis and S. marcescens (representing B. anthracis and Y. pestis, respectively) via real-time qPCR. Species-level specificity of the primers was demonstrated through comparisons with a bacterial strain panel and corroborated by qPCR data. Additionally, the primer efficacy was tested when template DNA was spiked into metagenomic DNA extracted from clinical lung microbiome samples. The results showed that while detection of B. thuringiensis or …


Effects Of Beta Amyloid On The Dna Methylation Status Of An In Vitro Model Of Alzheimer’S Disease, Noor Taher Apr 2013

Effects Of Beta Amyloid On The Dna Methylation Status Of An In Vitro Model Of Alzheimer’S Disease, Noor Taher

Senior Honors Theses

Available evidence points toward an epigenetic process in Alzheimer’s disease. This thesis describes the research that was done to investigate changes in DNA methylation using an in vitro model of the disease. Although the results indicated no global changes in methylation levels after treating differentiated IMR-32 cells with beta amyloid, there were several regions of the genome that changed their methylation status. Gene ontology studies revealed that these regions are associated with neuronal differentiation and cell fate genes, thus providing a possible model for the contribution of beta amyloid to the development of Alzheimer’s disease. This study provides incentive to …


Detection Of Viable Microorganisms Using Propidium Monoazide, Erik J. Mcfarland, Adrian Ponce Dr. Jan 2013

Detection Of Viable Microorganisms Using Propidium Monoazide, Erik J. Mcfarland, Adrian Ponce Dr.

STAR Program Research Presentations

Propidium monoazide (PMA) is a molecular tool used to assess viability of microorganisms. Currently, PMA is thought to discern viability through membrane permeability; PMA enters only membrane compromised cells, irreversibly crosslinks to theirDNAand precipitates theDNAout of solution, preventing it from being amplified during polymerase chain reaction (PCR). Using PMA on a sample of live and dead microorganisms results in only theDNAof living organisms being amplified and identified. Therefore, a comparison ofPCRresults with and without PMA allows one to determine the live fraction and total population, respectively.

Current literature provides conflicting evidence as to the effectiveness of the technique. Our research …


Controls Of Nucleosome Positioning In The Human Genome, Daniel J. Gaffney, Graham Mcvicker, Athma A. Pai, Yvonne N. Fondufe-Mittendorf, Noah Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, Jonathan K. Pritchard Nov 2012

Controls Of Nucleosome Positioning In The Human Genome, Daniel J. Gaffney, Graham Mcvicker, Athma A. Pai, Yvonne N. Fondufe-Mittendorf, Noah Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, Jonathan K. Pritchard

Molecular and Cellular Biochemistry Faculty Publications

Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq) from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning …


Lesion-Specific Dna-Binding And Repair Activities Of Human O⁶-Alkylguanine Dna Alkyltransferase, Manana Melikishvili, Michael G. Fried Jan 2012

Lesion-Specific Dna-Binding And Repair Activities Of Human O⁶-Alkylguanine Dna Alkyltransferase, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Binding experiments with alkyl-transfer-active and -inactive mutants of human O6-alkylguanine DNA alkyltransferase (AGT) show that it forms an O6-methylguanine (6mG)-specific complex on duplex DNA that is distinct from non-specific assemblies previously studied. Specific complexes with duplex DNA have a 2:1 stoichiometry that is formed without accumulation of a 1:1 intermediate. This establishes a role for cooperative interactions in lesion binding. Similar specific complexes could not be detected with single-stranded DNA. The small difference between specific and non-specific binding affinities strongly limits the roles that specific binding can play in the lesion search process. Alkyl-transfer kinetics with …


Cooperative Cluster Formation, Dna Bending And Base-Flipping By O6-Alkylguanine-Dna Alkyltransferase, Ingrid Tessmer, Manana Melikishvili, Michael G. Fried Jan 2012

Cooperative Cluster Formation, Dna Bending And Base-Flipping By O6-Alkylguanine-Dna Alkyltransferase, Ingrid Tessmer, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

O6-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in DNA, protecting the genome and also contributing to the resistance of tumors to chemotherapeutic alkylating agents. AGT binds DNA cooperatively, and cooperative interactions are likely to be important in lesion search and repair. We examined morphologies of complexes on long, unmodified DNAs, using analytical ultracentrifugation and atomic force microscopy. AGT formed clusters of ≤11 proteins. Longer clusters, predicted by the McGhee–von Hippel model, were not seen even at high [protein]. Interestingly, torsional stress due to DNA unwinding has the potential to limit cluster size …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …


Generation Of A Reporter Library Of Eralpha Interacting Dna Sequences, Cormac Jennings Jan 2009

Generation Of A Reporter Library Of Eralpha Interacting Dna Sequences, Cormac Jennings

Masters

Oestrogens are a group of steroid hormones of which oestradiol is the major form. Oestrogens are present in men and women and some of their main physiological roles involve female and male reproduction, bone metabolism and homeostasis. Oestrogens carry out their actions by diffusing across the cell membrane and binding to their receptor called the oestrogen receptor (ER), of which two types exist, ERα and ERβ. ERs regulate gene expression through the binding of DNA, most notably the estrogen response element (ERE). Breast cancer is the most common malignancy in women in industrialised countries and 65 percent of breast cancers …


Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan May 2008

Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan

NYMC Faculty Publications

Oxidative stress is pathogenic in neurological diseases, including stroke. The identity of oxidative stress-inducible transcription factors and their role in propagating the death cascade are not well known. In an in vitro model of oxidative stress, the expression of the bZip transcription factor activating transcription factor 4 (ATF4) was induced by glutathione depletion and localized to the promoter of a putative death gene in neurons. Germline deletion of ATF4 resulted in a profound reduction in oxidative stress-induced gene expression and resistance to oxidative death. In neurons, ATF4 modulates an early, upstream event in the death pathway, as resistance to oxidative …


Electrical Detection Of The Temperature Induced Melting Transition Of A Dna Hairpin Covalently Attached To Gold Interdigitated Microelectrodes, Greg P. Brewood, Yaswanth Rangineni, Daniel J. Fish, Ashwini Bhandiwad, David R. Evans, Raj Solanki, Albert S. Benight Jan 2008

Electrical Detection Of The Temperature Induced Melting Transition Of A Dna Hairpin Covalently Attached To Gold Interdigitated Microelectrodes, Greg P. Brewood, Yaswanth Rangineni, Daniel J. Fish, Ashwini Bhandiwad, David R. Evans, Raj Solanki, Albert S. Benight

Chemistry Faculty Publications and Presentations

The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5' end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25 degrees C to 80 degrees C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded …


Beta-Lactamase: An Ideal Reporter System For Monitoring Gene Expression In Live Eukaryotic Cells, Sohail A. Qureshi Jan 2007

Beta-Lactamase: An Ideal Reporter System For Monitoring Gene Expression In Live Eukaryotic Cells, Sohail A. Qureshi

Department of Biological & Biomedical Sciences

To gain insightful information about the mechanisms through which genes are activated and repressed requires gene reporter systems that are sensitive, robust, and cost-effective. Although numerous reporter gene technologies are commercially available, none are as sophisticated and user-friendly as beta-lactamase (BLA) when it comes to studying gene expression in live cells. This article presents an overview of the BLA technology and describes how it can be exploited for studying rare events such as homologous recombination in somatic cells and be used to deliver any DNA sequence of choice anywhere within the genome.


A Model Of Dna Knotting And Linking, Erica Flapan, Dorothy Buck Jan 2007

A Model Of Dna Knotting And Linking, Erica Flapan, Dorothy Buck

Pomona Faculty Publications and Research

We present a model of how DNA knots and links are formed as a result of a single recombination event, or multiple rounds of (processive) recombination events, starting with an unknotted, unlinked, or a (2,m)-torus knot or link substrate. Given these substrates, according to our model all DNA products of a single recombination event or processive recombination fall into a single family of knots and links.


Dna Damage Responses In Progeroid Syndromes Arise From Defective Maturation Of Prelamin A, Michael Sinensky, Y. Liu, A. Rusinol, Y. Wang, Y. Zou Jan 2006

Dna Damage Responses In Progeroid Syndromes Arise From Defective Maturation Of Prelamin A, Michael Sinensky, Y. Liu, A. Rusinol, Y. Wang, Y. Zou

Faculty Publications, Biological Sciences

The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their …


Cationic Surfactant Mediated Hybridization And Hydrophobization Of Dna Molecules At The Liquid/Liquid Interface And Their Phase Transfer, Murali Sastry, Ashavani Kumar, Mrunalini Pattarkine, Vidya Ramakrishnan, Krishna N. Ganesh Jan 2001

Cationic Surfactant Mediated Hybridization And Hydrophobization Of Dna Molecules At The Liquid/Liquid Interface And Their Phase Transfer, Murali Sastry, Ashavani Kumar, Mrunalini Pattarkine, Vidya Ramakrishnan, Krishna N. Ganesh

Faculty Works

Hybridization of complementary oligonucleotides mediated by a cationic surfactant at the water/hexane interface leads to hydrophobic, double-helical DNA which may be readily phase transferred to the organic phase and cast into thin films on solid substrates.


The Drosophila Melanogaster Rad54 Homolog, Dmrad54, Is Involved In The Repair Of Radiation Damage And Recombination, Rolf Kooistra, José B. M. Zonneveld, Anja De Jong, Jan C. J. Eeken, Chris J. Osgood, Jean-Marie Buerstedde, Paul H. M. Lohman, Albert Pastink Jan 1997

The Drosophila Melanogaster Rad54 Homolog, Dmrad54, Is Involved In The Repair Of Radiation Damage And Recombination, Rolf Kooistra, José B. M. Zonneveld, Anja De Jong, Jan C. J. Eeken, Chris J. Osgood, Jean-Marie Buerstedde, Paul H. M. Lohman, Albert Pastink

Biological Sciences Faculty Publications

The RAD54 gene of Saccharomyces cerevisiae plays a crucial role in recombinational repair of double-strand breaks in DNA. Here the isolation and functional characterization of the RAD54 homolog of the fruit fly Drosophila melanogaster, DmRAD54, are described. The putative Dmrad54 protein displays 46 to 57% identity to its homologs from yeast and mammals. DmRAD54 RNA was detected at all stages of fly development, but an increased level was observed in early embryos and ovarian tissue. To determine the function of DmRAD54, a null mutant was isolated by random mutagenesis. DmRAD54-deficient flies develop normally, but the females …


Molecular Cloning And Rare Cleavage Mapping Of Human 2p, 6q, 8q, 12q, And 18q Telomeres, Roberto A. Macina, Ken Morii, Xue-Lan Hu, Dimitri G. Negorev, Chrysanthe Spais, Lisa A. Ruthig, Harold C. Riethman Jan 1995

Molecular Cloning And Rare Cleavage Mapping Of Human 2p, 6q, 8q, 12q, And 18q Telomeres, Roberto A. Macina, Ken Morii, Xue-Lan Hu, Dimitri G. Negorev, Chrysanthe Spais, Lisa A. Ruthig, Harold C. Riethman

Medical Diagnostics & Translational Sciences Faculty Publications

Large terminal fragments of human chromosomes 2p, 6q, 8q, 12q, and 18q were cloned using yeast artificial chromosomes (YACs). RecA-assisted restriction endonuclease (RARE) cleavage analysis of genomic DNA samples from 11 unrelated individuals using YAC-derived probes confirmed the telomeric localizations of the half-YACs studied. The cloned Fragments provide telomeric closure of maps for the respective chromosome arms and will supply the reagents needed for analyzing and sequencing these distal subtelomeric regions.


Production Of Interleukin 10 By Islet Cells Accelerates Immune-Mediated Destruction Of Beta Cells In Nonobese Diabetic Mice., Lise Wogensen, Myung-Shik Lee, Nora Sarvetnick Apr 1994

Production Of Interleukin 10 By Islet Cells Accelerates Immune-Mediated Destruction Of Beta Cells In Nonobese Diabetic Mice., Lise Wogensen, Myung-Shik Lee, Nora Sarvetnick

Journal Articles: Regenerative Medicine

The T helper type 2 (Th2) cell product interleukin 10 (IL-10) inhibits the proliferation and function of Th1 lymphocytes and macrophages (M phi). The nonobese diabetic mouse strain (NOD/Shi) develops a M phi and T cell-dependent autoimmune diabetes that closely resembles human insulin-dependent diabetes mellitus (IDDM). The objective of the present study was to explore the consequences of localized production of IL-10 on diabetes development in NOD/Shi mice. Surprisingly, local production of IL-10 accelerated the onset and increased the prevalence of diabetes, since diabetes developed at 5-10 wk of age in 92% of IL-10 positive I-A beta g7/g7, I-E- mice …


Expression Of Prelamin A Confers Sensitivity Of Dna Biosynthesis To Lovastatin On F9 Teratocarcinoma Cells, Michael Sinensky, T. Mclain, K. Fantle Jan 1994

Expression Of Prelamin A Confers Sensitivity Of Dna Biosynthesis To Lovastatin On F9 Teratocarcinoma Cells, Michael Sinensky, T. Mclain, K. Fantle

Faculty Publications, Biological Sciences

No abstract provided.


The Characterization Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Vicky L. Montoya, Wendy L. Murdoch, Roy C. Ogle, John L. Keating, Robert M. Grainger Aug 1988

The Characterization Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Vicky L. Montoya, Wendy L. Murdoch, Roy C. Ogle, John L. Keating, Robert M. Grainger

Medical Diagnostics & Translational Sciences Faculty Publications

We have isolated ribosomal RNA gene (rDNA) chromatin from Physarum polycephalum using a nucleolar isolation procedure that minimizes protein loss from chromatin and, subsequently, either agarose gel electrophoresis or metrizamide gradient centrifugation to purify this chromatin fraction (Amero, S. A., Ogle, R. C., Keating, J. L., Montoya, V. L., Murdoch, W. L., and Grainger, R. M. (1988) J. Biol. Chem. 263, 10725-10733). Metrizamide-purified rDNA chromatin obtained from nucleoli isolated according to the new procedure has a core histone/DNA ratio of 0.77:1. The major core histone classes comigrate electrophoretically with their nuclear counterparts on Triton-acid-urea/sodium dodecyl sulfate two-dimensional gels, although they …


The Purification Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Roy C. Ogle, John L. Keating, Vicky L. Montoya, Wendy L. Murdoch, Robert M. Grainger Jan 1988

The Purification Of Ribosomal Rna Gene Chromatin From Physarum Polycephalum, Sally A. Amero, Roy C. Ogle, John L. Keating, Vicky L. Montoya, Wendy L. Murdoch, Robert M. Grainger

Medical Diagnostics & Translational Sciences Faculty Publications

We have undertaken the purification of ribosomal RNA gene (rDNA) chromatin from the slime mold Physarum polycephalum, in order to study its chromatin structure. In this organism rDNA exists in nucleoli as highly repeated minichromosomes, and one can obtain crude chromatin fractions highly enriched in rDNA from isolated nucleoli. We first developed a nucleolar isolation method utilizing polyamines as stabilization agents that results in a chromatin fraction containing far more protein than is obtained by the more commonly used divalent cation isolation methods. The latter method appears to result in extensive histone loss during chromatin isolations. Two methods were then …