Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Aggregation Characterization Of Wild-Type P53 And Six Common P53 Mutants, Taylor A. Arhar Dec 2015

Aggregation Characterization Of Wild-Type P53 And Six Common P53 Mutants, Taylor A. Arhar

Honors Thesis

P53 is a tumor suppressor protein, which functions in maintaining the cell cycle. When p53 loses its function, cells may multiply at an uncontrolled rate and form tumors. This loss of function is linked to over fifty percent of human cancers. This investigation aims to explore the possible link between p53 aggregation and tumorigenesis. There is a possibility that p53, especially in mutant form, will aggregate beyond its normal tetrameric conformation and lose its function, leading to tumor formation. Wild-type p53 and six mutants, R175H, R175C, R248Q, R248W, R273C, and R273H (six of the most common mutations found in human …


Investigating The Binding Potential And Downstream Effects Of Ferrocene/ Ruthenium (Iii) Complexes With Rna, Mildred Apollo Kissai Jan 2015

Investigating The Binding Potential And Downstream Effects Of Ferrocene/ Ruthenium (Iii) Complexes With Rna, Mildred Apollo Kissai

Senior Projects Spring 2015

Cisplatin, one of the most popular chemotherapeutic drugs on the market today, battles cancer by binding to DNA, and causing kinks which obstruct DNA replication and transcription. As a result, cisplatin halts cell proliferation of not only fast-dividing cancerous cells but healthy cells as well. To circumvent the shortcomings of cisplatin, the Anderson lab has synthesized a class of ruthenium (III)/ ferrocene compounds, named the RuLX series. These new hetero- multinuclear complexes may have greater selectivity between cancerous and healthy cells through a proposed synergistic mechanism of their metal centers. Previous work on these novel complexes has demonstrated that they …


Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad Jan 2015

Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad

Theses and Dissertations

Glioblastoma multiforme (GBM) is the most common primary brain tumor. Studies have shown that targeting the DNA damage response can sensitize cancer cells to DNA damaging agents. Ataxia telangiectasia mutated (ATM) is involved in signaling DNA double strand breaks. Our group has previously shown that ATM inhibitors (ATMi) sensitize GBM cells and tumors to ionizing radiation. This effect is greater when the tumor suppressor p53 is mutated.

The goals of this work include validation of a new ATM inhibitor, AZ32, and elucidation of how ATMi and p53 status interact to promote cell death after radiation. We propose that ATMi and …


Rna Aptamers For Molecular Chaperones Hsp27 And Hsp90, Sathishkumar Kumar Munusamy Jan 2015

Rna Aptamers For Molecular Chaperones Hsp27 And Hsp90, Sathishkumar Kumar Munusamy

Legacy Theses & Dissertations (2009 - 2024)

Hsp90 and Hsp27 are members of the heat shock protein family of chaperones that perform multiple roles in cellular maintenance through protein folding and inhibition of apoptosis. They are abundantly expressed in cells and are over-expressed during conditions of stress. Hsp90 requires ATP for its chaperone function while Hsp27 self-associates into higher order oligomers enclosing its substrate. Their ability to interact with other proteins or with themselves lies at the heart of their mechanisms. The specific consequences of each of their interactions on global cellular health have not yet been fully discovered. The sheer diversity of proteins that interact with …


Nitric Oxide Synthase Activity And Its Modulation In The Treatment Of Colorectal Cancer, Asim Alam Jan 2015

Nitric Oxide Synthase Activity And Its Modulation In The Treatment Of Colorectal Cancer, Asim Alam

Theses and Dissertations

The American Cancer Society estimates more than 141,000 new cases of and about 50,000 deaths from colorectal cancer every year. Treatment options include surgery, radiation therapy and targeted therapies such as anti-angiogenics. However, no therapies address the key driving factor of colorectal cancer: inflammation. It is well known that chronic inflammatory conditions such as Crohn’s Disease, ulcerative colitis, diabetes, obesity and cigarette smoking all elevate the risk of developing colorectal cancer. One of the hallmarks of chronic inflammation is the elevated levels of reactive oxygen/nitrogen species (ROS/RNS). A primary source of these ROS/RNS is uncoupled Nitric Oxide Synthase (NOS). Under …


Genomic Aberrations At The 3q And 14q Loci: Investigation Of Key Players In Ovarian And Renal Cancer Biology, Punashi Dutta Jan 2015

Genomic Aberrations At The 3q And 14q Loci: Investigation Of Key Players In Ovarian And Renal Cancer Biology, Punashi Dutta

USF Tampa Graduate Theses and Dissertations

Genomic aberrations are primary contributors to the pathophysiology of cancer [11]. Dysregulated expression of genes located within these aberrations are important predictors of chemoresistance, disease prognosis, and patient outcome [12]. This dissertation is focused on understanding the regulation and/or functions of specific genes located at dysregulated genomic regions such as 3q26 and 14q32 in the biology of ovarian and renal cancer, respectively.

Serous epithelial ovarian cancer (EOC) manifest amplification at the 3q26.2 locus [2], an observation consistent with the cancer genome atlas (TCGA) [13]. The most amplified gene in this region is EVI1 which has been extensively studied in hematological …