Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Cancer

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 148

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner Feb 2024

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner

Dissertations, Theses, and Capstone Projects

The examination of the cell cycle carries significant implications for the biology, health, and overall existence of all living things. These implications span from the development and growth of these organisms to the aging process and cancer, as well as the potential of stem cell therapies to repair diseases and injuries. Numerous proteins of the cell cycle are essential for cellular division and proliferation and are widely conserved over the course of evolution. In this work, we aimed to investigate the molecular processes of protein-protein interactions in cell cycle proteins, centering on two key players: Cdc6 in budding yeast and …


The Role Of The Cdk8 Kinase Module In Maintaining Proteostasis, Stephen Willis Jan 2024

The Role Of The Cdk8 Kinase Module In Maintaining Proteostasis, Stephen Willis

Theses and Dissertations

The underlying etiology of numerous disease states results from perturbations in the maintenance of cellular proteostasis. Carcinogenesis relies on these perturbations to foster uncontrolled cell growth and eventual metastases, while neurodegenerative diseases are a consequence of such perturbations. Control of these processes occurs at numerous molecular levels, commonly starting with transcription. A key transcriptional complex that is involved is the CDK8 Kinase Module (CKM). The CKM is conserved from yeast to man, forming a tetrameric complex consisting of MED12, MED13, CDK8, and CCNC. The CKM has not only been implicated in a variety of cancers but also in a spectrum …


"Hunter-Killer" Peptoid-Peptide Conjugate To Target And Eliminate Cancer Stem Cells, Breanne F. Mcelderry Jan 2024

"Hunter-Killer" Peptoid-Peptide Conjugate To Target And Eliminate Cancer Stem Cells, Breanne F. Mcelderry

Chemistry Theses

In the contemporary paradigm concerning the emergence of therapy-resistant recurrent cancer, recent studies posit the existence of a limited population of self-renewing malignant progenitors known as cancer stem cells (CSCs). The presence of CSCs explains why tumors often relapse despite clinical remission with initial therapeutic interventions. Consequently, the development of innovative therapeutic modalities specifically tailored to target and eliminate CSCs represents a highly promising strategy for eradicating cancer without the risk of recurrence. In previous research, we successfully developed a synthetic peptoid-based ligand CL-1-19-1 that selectively binds to CSC over non-CSC. However, CL-1-19-1 did not exhibit any significant inhibitory effect …


Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono May 2023

Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono

Seton Hall University Dissertations and Theses (ETDs)

Osteoblast-targeting peptides in the treatment of bone disease is a new and novel approach to offering effective treatment of various cancers and can be used in bio-medical, medicinal chemistry and biotechnology applications. By targeting adhesion proteins produced by osteoblast cells, certain cancers which migrate and metastasize to the bone may be more effectively treated. An osteoblast-targeting peptide composed of Ser-Asp-Ser-Ser-Asp (SDSSD) which selectively binds to osteoblast cells via periostin has recently been identified. This peptide was functionalized with polyurethane, generating nanomicelles which encapsulated RNA for the therapeutic treatment of osteoporosis. This study has served as the basis for the research …


Development Of Multivalent Dna-Peptide Nucleosome Mimetics And Multi-Domain Protein Inhibitors That Directly Or Indirectly Target The E3 Ligase Uhrf1, Li Gu Jan 2023

Development Of Multivalent Dna-Peptide Nucleosome Mimetics And Multi-Domain Protein Inhibitors That Directly Or Indirectly Target The E3 Ligase Uhrf1, Li Gu

University of the Pacific Theses and Dissertations

UHRF1 is an E3 ubiquitin ligase and a key epigenetic regulator establishing a crosstalk between DNA methylation and histone modification. Despite the important biochemical role of UHRF1 in cells, its overexpression has been found in almost all primary cancer types including breast cancer, lung cancer and so on. Numerous evidence indicates a strong link between tumorigenesis and UHRF1 overexpression, supporting its potential as a universal biomarker for cancer. However, UHRF1 is “yet-to-be drugged” and no highly potent chemical probes have been developed to target UHRF1 to date. In this study, we proposed two drug design approaches for UHRF1. The first …


Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty Jan 2023

Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty

Honors Theses and Capstones

Nearly one out of six deaths in 2020, around ten million people, were caused by cancer, making it a leading cause of death worldwide (WHO, 2022). This major public health issue, in addition to the rise of multidrug-resistant (MDR) pathogens, provides a high demand for the discovery of new pharmaceutical drugs to be used clinically to treat these conditions. The Streptomyces genus accounts to produce 39% of all microbial metabolites currently approved for human health, indicating its potential as an important species to study for antimicrobial and anticancer agents. The long linear genome of Streptomyces contains specialized sequences known as …


Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley Jan 2023

Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley

Theses and Dissertations

There is a continued need for new technology and strategies for tackling cancer and other diseases, and within the current century a novel therapeutic strategy has emerged in the realm of targeted protein degradation called Proteolysis-Targeting Chimeras (PROTACs). This technology specifically targets and degrades disease-causing proteins via the ubiquitin-proteasome system, and has seen an explosion of research and intrigue in both academia and industry over the past two decades. The diversity of PROTAC classes based on the E3 ligase recruiting ligand and the target protein allows for a universal molecular structure that can be customized for a specific target and …


Engineering And Characterizing Proteins: A Dual Study On Canine P53 Protein And Cyan Thermal Protein, Dhruv B. Sitapara Jan 2023

Engineering And Characterizing Proteins: A Dual Study On Canine P53 Protein And Cyan Thermal Protein, Dhruv B. Sitapara

MSU Graduate Theses

This research aims to explore protein development and characterization, focusing on a dual study of canine p53 protein and cyan thermal protein. For the canine p53 protein, the goal is to comprehend its structure to better understand a key component of canine cancers. This multi-step process involved expressing the canine p53 DNA-binding domain in E. coli and purifying it through affinity and ion-exchange chromatography. The purified protein was studied to test the binding of canine p53 protein to human DNA sequences using Surface Plasmon Resonance (SPR) experiments and an Electrophoretic Mobility Shift Assay (EMSA), visualized with a SYBR-safe stain. The …


Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


Investigation Of Mechanical Regulation On Stat3 Activity And Mmp Production, Jaxson R. Libby Jan 2023

Investigation Of Mechanical Regulation On Stat3 Activity And Mmp Production, Jaxson R. Libby

Honors Theses and Capstones

Transcription factor, STAT3, is inappropriately expressed in cancer cells, and has contrasting activation in 2D versus 3D microenvironments. 2D plates are often used for drug screening and do not always recapitulate in vivo responses. To combat inaccurate 2D drug studies, a 3D hydrogel was created to support the growth of cancer cells into a tumor-like environment. The hydrogel consists of a biocompatible dextran homopolysaccharide, cell adhesion RGD sequences, and crosslinker MMP labile peptides. A pH dependent reaction couples the RGD sequences to dextran then the polymers are crosslinked into a gel. Crosslinking is accomplished using terminal cysteine peptide sequences, allowing …


Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder Dec 2022

Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder

Honors College Theses

Photodynamic therapy (PDT) is considered to be a potential replacement for traditional methods of chemotherapy. It includes the administration of photosensitizing agents (PS), which generate reactive oxygen species (ROS) upon excitation at a specific wavelength. With new outlooks and techniques, cancer research is advancing each day. It has allowed the progress of several theranostic drug delivery systems (DDS) exploring the area of nanomedicine.2 In the present work, a Rhodamine derivative, Rhodamine 6G (R6G) was used as the PS. In general, rhodamine compounds undergo cytotoxic reactions on photoexcitation by electron transfer reactions with folic acid within cells, making them a favorable …


Exploring The Anticancer Mechanism Of Thienopyrazole Derivative Tpz-1 In Acute Myeloid Leukemia, Jessica Dyanne Hess Dec 2022

Exploring The Anticancer Mechanism Of Thienopyrazole Derivative Tpz-1 In Acute Myeloid Leukemia, Jessica Dyanne Hess

Open Access Theses & Dissertations

Anticancer drug discovery is a time and resource-consuming process for which exceedingly reliable and efficient modern approaches are needed. Phenotypic drug screenings can generate highly potent and innovative drug candidates; however, deconvolution of the drugâ??s target often presents significant barriers to drug development. To overcome this hurdle, we have originally combined in vitro and in silico analyses to uncover the molecular mechanism(s) driving the anticancer activity of the uniquely structured small molecule drug candidate, Tpz-1. Our study revealed that Tpz-1 is a multitargeted agent which induces the programmed death of HL-60 acute myeloid leukemia cells primarily through disruption of microtubule …


Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Chemical Biology Approaches For Tracking And Manipulation Of Macrophage Phenotypes, Javier A. Mas Rosario Oct 2022

Chemical Biology Approaches For Tracking And Manipulation Of Macrophage Phenotypes, Javier A. Mas Rosario

Doctoral Dissertations

Macrophages are white blood cells of the innate immune system that have the ability to change phenotypically depending on the stimuli present in their surroundings through a process commonly referred to as polarization. Macrophage phenotypes broadly range from pro-inflammatory, anti-tumor (M1) to immune-suppressing (M2). Of particular interest to this work, breast cancer progression and metastasis rely on the presence of M2-like tumor-associated macrophages (TAMs). While many studies have shown the involvement of macrophages in tumor progression and metastasis, there remains a need to further explore these interactions and the polarization process, including tracking of macrophage subtypes. Toward this end, I …


Parallel Networks That Govern The Transcriptional Response To Stress, Serene Anne Durham Aug 2022

Parallel Networks That Govern The Transcriptional Response To Stress, Serene Anne Durham

Legacy Theses & Dissertations (2009 - 2024)

The transcription factor, p53, plays a pivotal role in the oversight of many stimulus-dependent pathways. Its ability to respond to a wide variety of cellular stress stimuli by activating a broad range of target genes has led it to be characterized as a stress-dependent transcription factor. Our research focuses on deconvoluting the varied transcriptional response to distinct stress signals in an attempt to define the regulatory strategies leading to gene activation after cell stress. We have found that distinct stress response networks, some of which are p53-independent, are converging at activation of a common set of target genes. Our data …


Wdr5 Network Analysis Using Ensemble Approaches, Ali Imran Jul 2022

Wdr5 Network Analysis Using Ensemble Approaches, Ali Imran

Dissertations - ALL

Understanding the properties of protein-protein interactions (PPIs) is necessary to deconvolute the processes inside living organisms. As such, research in this regard has significant implications for gaining insight into cancers and other diseases. Once understood, drugs can be designed to target these diseases. In these chapters we focus on the network of interactions of WD40 repeat protein 5 (WDR5), a known hub protein. Several of its interactions are significant for regulation of histone methylation and consequently epigenetic regulation. These interacting partners include the SET1 family of proteins and retinoblastoma binding protein-5 (RbBP5). In this work we used multiple ensemble measurement …


The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs Jun 2022

The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs

Undergraduate Honors Theses

Aggrephagy, a type of autophagy, is an essential cellular process by which protein aggregates are collected and broken down in the lysosome. Protein aggregates are implicated in several diseases including Alzheimer’s disease, diabetes, and cancer. Here, we investigate the ATG13-ATG101 protein complex, a sub-complex of the canonical ULK1 complex whose regulatory role in aggrephagy is not completely understood. We also develop a protein fragment complementation (PFC) assay using the biotin ligase TurboID to study the functions of the ATG13-ATG101 complex with increased specificity. We demonstrate that ATG13 is required for optimal degradation of p62-ubiquitin condensates. We also show that a …


The Role Of Foxd1 In Clear Cell Renal Cell Carcinoma, Kyle H. Bond May 2022

The Role Of Foxd1 In Clear Cell Renal Cell Carcinoma, Kyle H. Bond

Electronic Theses and Dissertations

Renal cell carcinoma (RCC) is the 8th most common cancer in the United States, with the clear cell variant (ccRCC) being the most prevalent. Over 14,000 people die every year to RCC, with rates continuing to increase with an aging general population. Patients suffering from metastatic RCC (mRCC) have extremely poor prognoses, with a 5-year survival of only 11.2%. Current treatment options include resection of primary lesions, tyrosine kinase inhibition (Sunitinib, Pazopanib), mTOR inhibition (Temsirolimus, Everolimus), and immune checkpoint inhibition (Nivolumab, Atezolizumab). Recent attention has been drawn to inhibition of transcription factors like HIF2α (Belzutifan). There is a need …


Characterization Of The Influence Of A Small Molecule Inhibitor On Ras-Related Proteins Interactions, Emilio Duverna May 2022

Characterization Of The Influence Of A Small Molecule Inhibitor On Ras-Related Proteins Interactions, Emilio Duverna

Graduate Theses and Dissertations

The Ras superfamily of small G proteins are involved in cell-signaling processes that, if not regulated, may lead to cell multiplication, apoptosis inhibition, and tumorigenesis. They function as molecular switches, which through GTP/GDP exchange cycle, switch on or off cellular activities. Overexpression and/or hyperactivity of these proteins have been linked to many diseases including various cancers. CDC42, a member of the Rho subfamily of the Ras superfamily of small G proteins, participates in the regulation of many cellular processes including cell adhesion, mitosis, and cytoskeletal rearrangements. CDC42 binds to and activates many effector proteins including CDC42-activated kinase (ACK). Abnormal activities …


Inhibition Of De Novo And The Prion-Like Spread Of Amyloidogenesis Using In Vitro And In Vivo Disease Models, Johnson Anazoba Joseph Jan 2022

Inhibition Of De Novo And The Prion-Like Spread Of Amyloidogenesis Using In Vitro And In Vivo Disease Models, Johnson Anazoba Joseph

Electronic Theses and Dissertations

The aberrant fibrous, extracellular, and intracellular proteinaceous deposits in cells, organs and tissues are referred to as amyloids. These deposits are dominated by β-sheet structures that have been implicated in several neurodegenerative diseases and cancer. In this work, the types of amyloidosis studied include Parkinson’s disease (PD) using UA196 and NL5901 strains of Caenorhabditis elegans (C. elegans), Alzheimer’s disease (AD) using GMC101 strain of C. elegans, and cancer-associated mutant p53 aggregation in MIA PaCa-2 mutant cells. Several molecules including SK-129, NS132, NS163, bexarotene, a polyphenol (-)-epi-gallocatechine gallate (EGCG), ADH40, RD148, and RD242 were screened in vitro and in …


Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari Dec 2021

Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari

Theses & Dissertations

Replicative DNA polymerases ε (Polε) and δ (Polδ) achieve high fidelity DNA synthesis through a precise balance of polymerization and exonucleolytic proofreading. Errors that escape proofreading are corrected by DNA mismatch repair (MMR). Ultramutated human cancers with proficient MMR carry alterations in the exonuclease domain of Polε, which were initially predicted to abolish proofreading. However, functional studies in yeast of the most recurrent Polε-P286R variant suggested defects beyond a loss of exonuclease activity. Indeed, biochemical analysis of the yeast Polε-P286R analog revealed increased polymerization capacity in addition to decreased proofreading, which enables efficient mismatch extension and bypass of replication-blocking non-B …


In Vitro Investigation Of Tumor Selective Piperidones As Therapeutic Agents Against Leukemia Cancer Cells, Lisett Contreras Dec 2021

In Vitro Investigation Of Tumor Selective Piperidones As Therapeutic Agents Against Leukemia Cancer Cells, Lisett Contreras

Open Access Theses & Dissertations

Cancer is a continuous global health issue. It is the second leading cause of death behind heart disease. Disparities across the emergence of cancer and resulting fatalities raise the importance of researching the disease. Treatments are available for certain types of cancers. However, these are typically accompanied by residual problems including side effects and the possibility for relapse. Some treatments attack all cells, leading to unwarranted side effects that make the possibility of living a comfortable life nearly impossible. Other treatments are specific to certain genetic alterations, making them only useful for a small percentage of patients. Not one treatment …


Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach Dec 2021

Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach

Graduate School of Biomedical Sciences Theses and Dissertations

There were an estimated 20 million new cancer cases worldwide in 2020, resulting in nearly 1000 deaths per hour [1]. Oral cancer exemplifies the difficulties of treating cancer patients. The first line for oral cancer treatment is surgery and radiation that can lead to patient disfigurement and decreased quality of life in cancer survivors [2-4]. Though there have been many developments in chemotherapy in the last 30 years, the 50% mortality rate associated with oral cancer has not changed [4, 5]. Longitudinal studies that track survival rates in oral cancer patients demonstrate a 3-fold reduction in patient deaths when patients …


Examination Of Methylation Status And Occupancy Of Dna Methylation Modifying Proteins On Regulatory Regions Of The Dax-1 Gene, Caroline P. Riedstra Aug 2021

Examination Of Methylation Status And Occupancy Of Dna Methylation Modifying Proteins On Regulatory Regions Of The Dax-1 Gene, Caroline P. Riedstra

Master's Theses

Epigenetic modifications influence gene expression and thereby play a pivotal role in development and disease. Misregulation and mutations in the DAX-1 gene, or Dosage-Sensitive Sex Reversal, Adrenal Hypoplasia Congenita, Critical Region on the X chromosome, gene 1, have been implicated in Adrenal Hypoplasia Congenita (AHC) and Dosage Sensitive Sex Reversal (DSS). The orphan nuclear hormone receptor DAX-1 is expressed predominantly in tissues such as the testes, ovaries, breast, adrenal cortex, and lung. Critically, DAX-1 may serve as an indicator of aberrant growth in these tissues. Here we hypothesize that DAX-1 is epigenetically regulated, specifically in cancer cells, thereby reducing its …


Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso Jul 2021

A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso

Graduate Theses and Dissertations

Cachexia is a multisystemic and multifactorial syndrome prevalent in cancer patients. It is clinically defined by involuntary loss of >5% weight in a six-month window, despite nutritional interventions. A negative energy balance characterizes cancer cachexia (CC), it is associated with weakness and fatigue in skeletal muscle. Impaired muscle function is associated with lower quality of life in cancer patients. Defects in mitochondrial function are strongly associated with muscle wasting. This study explored muscular contractile function and mitochondrial quality control (MQC) markers in soleus, gastrocnemius, and tibialis anterior (TA) muscles of C26-induced male tumor-bearing mice during a 25-day time course. It …


Evolution Of Targeted Therapy Resistance In Eml4-Alk Positive Non-Small Cell Lung Cancer, Robert Vander Velde Jun 2021

Evolution Of Targeted Therapy Resistance In Eml4-Alk Positive Non-Small Cell Lung Cancer, Robert Vander Velde

USF Tampa Graduate Theses and Dissertations

Targeted therapies have emerged as potent treatments that lead to the remission of many tumors. However, they rarely cure cancers in advanced, metastatic settings. This is due to the evolution of resistance, which in turn can be ascribed to the survival of small subpopulations of tolerant and/or resistant cells. Here we investigated the evolution of resistance to EML4-ALK inhibitors in non-small cell lung cancer (NSCLC) and demonstrated that resistance evolves gradually, from unique pre-treatment sub-populations, as multiple resistance mechanisms accumulate in a Darwinian fashion. Despite accumulating multiple changes, cells evolved, in parallel, toward similar inhibitor specific phenotypes. Evolving cells have …


Analyzing The Effects Of E-Hook Peptides On Kinesin-1, Ashton Ward Murrah, Baylee Hope Howard May 2021

Analyzing The Effects Of E-Hook Peptides On Kinesin-1, Ashton Ward Murrah, Baylee Hope Howard

Honors Theses

Cancer is the second leading cause of death in the United States. Cancerous growth is a result of oncogenes, or mutated genes that increase the rate of cell division in an uncontrolled manner. Cell division, which consists of mitosis and cytokinesis phases, is dependent upon the active movement of kinesin motor proteins along microtubules to rearrange the cytoskeleton for equitable distribution of genetic material to daughter cells. As kinesins are vital to this process, if we could prevent kinesin from binding to the microtubules, cell division would cease.

The goal of this study is to develop a method to prevent …


Understanding The Role Of Ano1 In Oral Cancer, Mallary Forrest May 2021

Understanding The Role Of Ano1 In Oral Cancer, Mallary Forrest

UNLV Theses, Dissertations, Professional Papers, and Capstones

In 2008, the gene ANO1 was discovered to encode a calcium activated chloride channel. This gene is located on the 11q13 locus, a locus that is commonly amplified in many cancers including cancer of the head and neck. ANO1 is situated in close proximity to genes associated with growth and apoptosis. As rapid proliferation and lack of apoptosis are hallmark characteristics of cancer, growth factors and apoptosis mediators are expected to be altered in cancer. But what does a calcium activated chloride channel have to contribute to cancer’s pathogenesis? Is it an active gene in cancer progression or is it …