Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Computational Biology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 150

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Assessment Of Enzyme Stability In Subsurface Sediments By Computational Methods, Kambiz Kalhor Aug 2024

Assessment Of Enzyme Stability In Subsurface Sediments By Computational Methods, Kambiz Kalhor

Masters Theses

The microorganisms found in marine subseafloor sediment play a vital role in global carbon and nitrogen cycles, with an estimated 2.9×1029 cells, accounting for about 0.6% of Earth’s total living biomass. These microbes grow at a very slow rate, with carbon turnover occurring over the course of years to thousands of years, about six orders of magnitude slower than sulfate reducing bacteria in pure culture. These slow metabolic rates suggest that the enzymes they produce must also have extended lifespans in order to be effective over such long periods of time. As a result, these enzymes are likely to …


Computational Analysis Of O6-Methylated Guanine And Thioguanine Complexes, Kirsten Stinson, Michael Bowman Jun 2024

Computational Analysis Of O6-Methylated Guanine And Thioguanine Complexes, Kirsten Stinson, Michael Bowman

Lux et Fides: A Journal for Undergraduate Christian Scholars

DNA methylation occurring on the O6 position of guanine has been linked to the formation of cancer. DNA complexes with O6-methylated guanine have been studied experimentally, yet questions remain concerning the carcinogenic properties of O6-methylguanine. This present research explored the interaction between O6-methylguanine and its potential nucleobase pairs of cytosine and adenine in hopes of elucidating the mutagenic characteristics of O6-methylguanine. A variety of computational methods including Density Functional Theory (DFT), Symmetry Adapted Perturbation Theory (SAPT), Noncovalent Interaction (NCI) analysis, and Natural Bond Orbital (NBO) analysis were employed to comprehensively probe …


Omani Camels From A Cultural And Genomics Perspective, Al Muatasim Al Zadjali May 2024

Omani Camels From A Cultural And Genomics Perspective, Al Muatasim Al Zadjali

Electronic Theses and Dissertations

The Dromedarian camel, Camelus dromedarius, is native to the Arabian Peninsula, including the Sultanate of Oman. These camels are used for food, milk, as well as show and racing competitions. Despite their economic and cultural importance research on camels in Oman is limited. The goal of this study was to examine their genomic variation, relationship with camels in other parts of the Arabian Peninsula, and to determine if selective breeding has led to the establishment of distinct breeds in Oman. Information was compiled from multiple sources to produce a comprehensive review on the breeding, management, economic and cultural use, …


In Silico Analysis Of C-Type Lectins As Co-Infection Receptors Of Dengue And Chikungunya Viruses In Aedes Aegypti, Munawir Sazali, R. C. Hidayat Soesilohadi, Nastiti Wijayanti, Tri Wibawa, Arif Nur Muhammad Ansori Mar 2024

In Silico Analysis Of C-Type Lectins As Co-Infection Receptors Of Dengue And Chikungunya Viruses In Aedes Aegypti, Munawir Sazali, R. C. Hidayat Soesilohadi, Nastiti Wijayanti, Tri Wibawa, Arif Nur Muhammad Ansori

Makara Journal of Science

Aedes aegypti is a primer vector of dengue virus (DENV) and chikungunya virus (CHIKV). The susceptibility of mosquitoes to DENV and CHIKV depends on their recognition receptor of pathogens. C-type lectins (CTLs) are an important mediator of virus infection in A. aegypti. This study aims to identify potential receptors and determine the binding affinity between ligand–receptor interaction, CTLs and virus envelopes (DENV-1, 2, 3, and 4 and CHIKV) interaction based on in silico analysis. Sample sequences were obtained from GenBank (NCBI), and 10 CTLs were acquired from VectorBase. Homology modeling based on a minimum standard of 20% was processed …


Exploring 3d Genome Interaction And Epigenetic Regulation Via Swi/Snf Complex And Deep Learning Models, Ruoyun Wang Jan 2024

Exploring 3d Genome Interaction And Epigenetic Regulation Via Swi/Snf Complex And Deep Learning Models, Ruoyun Wang

Dartmouth College Ph.D Dissertations

The three-dimensional organization of the genome is fundamental in regulating gene expression and maintaining cellular function. This organization's complexities, influenced by epigenetic marks and chromatin remodeling complexes, are crucial for understanding genomic regulation. Among these, the SWI/SNF complexes are key, facilitating chromatin accessibility and regulating gene activity across cell types. The first part of my dissertation focuses on SWI/SNF complexes, exploring their role in chromatin remodeling and their impact on 3D genome architecture. Utilizing next-generation sequencing (NGS) techniques, this section investigates the interplay between these complexes and chromatin structure. During my research on the SWI/SNF complex, I was intrigued by …


Modeling Nonsegmented Negative-Strand Rna Virus (Nnsv) Transcription With Ejective Polymerase Collisions And Biased Diffusion, Felipe-Andres Piedra Sep 2023

Modeling Nonsegmented Negative-Strand Rna Virus (Nnsv) Transcription With Ejective Polymerase Collisions And Biased Diffusion, Felipe-Andres Piedra

Research Symposium

Background: The textbook model of NNSV transcription predicts a gene expression gradient. However, multiple studies show non-gradient gene expression patterns or data inconsistent with a simple gradient. Regarding the latter, several studies show a dramatic decrease in gene expression over the last two genes of the respiratory syncytial virus (RSV) genome (a highly studied NNSV). The textbook model cannot explain these phenomena.

Methods: Computational models of RSV and vesicular stomatitis virus (VSV – another highly studied NNSV) transcription were written in the Python programming language using the Scientific Python Development Environment. The model code is freely available on GitHub: …


Exploring The Interactions Between Sars-Cov-2 And Host Proteins., Sojan Shrestha Jul 2023

Exploring The Interactions Between Sars-Cov-2 And Host Proteins., Sojan Shrestha

School of Biological Sciences: Dissertations, Theses, and Student Research

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current pandemic, Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 is considered to be of zoonotic origin; it originated in non-human animals and was transmitted to humans. Since the early stage of the pandemic, however, the evidence of transmissions from humans to animals (reverse zoonoses) has been found in multiple animal species including mink, white-tailed deer, and pet and zoo animals. Furthermore, secondary zoonotic events of SARS-CoV-2, transmissions from animals to humans, have been also reported. It is suggested that non-human hosts can act as SARS-CoV-2 reservoirs where accumulated …


Structural Diversity And Stress Regulation Of The Plant Immunity-Associated Calmodulin-Binding Protein 60 (Cbp60) Family Of Transcription Factors In Solanum Lycopersicum (Tomato), Vanessa Shivnauth, Sonya Pretheepkumar, Eric J. R. Marchetta, Christina A. M. Rossi, Keaun Amani, Christian Castroverde Jul 2023

Structural Diversity And Stress Regulation Of The Plant Immunity-Associated Calmodulin-Binding Protein 60 (Cbp60) Family Of Transcription Factors In Solanum Lycopersicum (Tomato), Vanessa Shivnauth, Sonya Pretheepkumar, Eric J. R. Marchetta, Christina A. M. Rossi, Keaun Amani, Christian Castroverde

Biology Faculty Publications

Cellular signaling generates calcium (Ca2+) ions, which are ubiquitous secondary messengers decoded by calcium-dependent protein kinases, calcineurins, calreticulin, calmodulins (CAMs), and CAM-binding proteins. Previous studies in the model plant Arabidopsis thaliana have shown the critical roles of the CAM-BINDING PROTEIN 60 (CBP60) protein family in plant growth, stress responses, and immunity. Certain CBP60 factors can regulate plant immune responses, like pattern-triggered immunity, effector-triggered immunity, and synthesis of major plant immune-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). Although homologous CBP60 sequences have been identified in the plant kingdom, their function and regulation in most species remain unclear. In …


Acetate Metabolism In The Fungal Pathogen Cryptococcus Neoformans, Oly Ahmed May 2023

Acetate Metabolism In The Fungal Pathogen Cryptococcus Neoformans, Oly Ahmed

All Dissertations

Cryptococcus neoformans is an environmental basidiomycetous fungus with a worldwide distribution and a wide range of habitats. Inhalation of the desiccated yeasts or spores of C. neoformans often leads to opportunistic pulmonary infections in immunocompromised individuals, and in severe cases causes lethal meningitis following hematogenous dissemination. During infection, depending on the tissue and disease state, the invading fungi experience a range of nutrient microenvironments within the host body. As a result, rapid metabolic adaptations geared towards efficient utilization of carbon sources alternative to glucose become one of the prime determinants of survival and growth for the pathogen. Incidentally, cryptococcal infection …


Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii Jan 2023

Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii

Graduate Theses, Dissertations, and Problem Reports

Saccharomyces cerevisiae are yeast that are unicellular eukaryotic organisms that are well studied as a model organism for understanding fundamental cellular processes. The ability of yeast to sense nutrient availability is crucial for their survival, growth, and reproduction. Yeast cells use various mechanisms to sense and respond to nutrient availability, including transporter-mediated uptake, receptor-mediated signaling, and sensing of metabolites. The subcellular localization of nutrient-sensing components is crucial for yeast function in nutrient sensing and signaling. Protein complexes, such as the AMP-activated protein kinase (AMPK) pathway, in nutrient sensing and response, as well as the downstream effects of these pathways …


Caribbean Reef-Building Coral-Symbiodiniaceae Network: Identifying Symbioses Critical For System Stability In A Changing Climate, Shaman Patel Dec 2022

Caribbean Reef-Building Coral-Symbiodiniaceae Network: Identifying Symbioses Critical For System Stability In A Changing Climate, Shaman Patel

All HCAS Student Capstones, Theses, and Dissertations

Increasing global ocean temperatures and frequency of marine heatwaves pose dire consequences for coral reefs. High temperatures often lead to disruptions in coral symbiosis resulting in coral bleaching, increasing the mortality of corals. However, corals can potentially avoid bleaching peril by associating with thermally tolerant symbionts. Here we provide a tool for understanding symbiosis network stability of Caribbean reef-building corals. We created a network of Caribbean hermatypic corals and their associated Symbiodiniaceae phylotypes. A bleaching model was applied to this network to test for resilience and robustness (R50) to thermal stress. It was also layered with trait data for coral …


Radiation Exposure Determination In A Secure, Cloud-Based Online Environment, Ben C. Shirley, Eliseos J. Mucaki, Peter Rogan Oct 2022

Radiation Exposure Determination In A Secure, Cloud-Based Online Environment, Ben C. Shirley, Eliseos J. Mucaki, Peter Rogan

Biochemistry Publications

Rapid sample processing and interpretation of estimated exposures will be critical for triaging exposed individuals after a major radiation incident. The dicentric chromosome (DC) assay assesses absorbed radiation using metaphase cells from blood. The Automated Dicentric Chromosome Identifier and Dose Estimator System (ADCI) identifies DCs and determines radiation doses. This study aimed to broaden accessibility and speed of this system, while protecting data and software integrity. ADCI Online is a secure web-streaming platform accessible worldwide from local servers. Cloud-based systems containing data and software are separated until they are linked for radiation exposure estimation. Dose estimates are identical to ADCI …


Towards More Complete Metagenomic Analyses Through Circularized Genomes And Conjugative Elements, Benjamin R. Joris Aug 2022

Towards More Complete Metagenomic Analyses Through Circularized Genomes And Conjugative Elements, Benjamin R. Joris

Electronic Thesis and Dissertation Repository

Advancements in sequencing technologies have revolutionized biological sciences and led to the emergence of a number of fields of research. One such field of research is metagenomics, which is the study of the genomic content of complex communities of bacteria. The goal of this thesis was to contribute computational methodology that can maximize the data generated in these studies and to apply these protocols human and environmental metagenomic samples.

Standard metagenomic analyses include a step for binning of assembled contigs, which has previously been shown to exclude mobile genetic elements, and I demonstrated that this phenomenon extends to all conjugative …


Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler Aug 2022

Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler

Electronic Theses and Dissertations

Microbial communities contain densely packed cells where competition for space and resources are fierce. These communities are generally referred to as biofilms and provide advantages to individual cells against immunological and antimicrobial intervention, dehydration, and predation. High intracellular pools of cyclic diguanylate monophosphate (c-di-GMP) cause cells to aggregate during biofilm formation through the production of diverse extracellular polymers. Genes that encode c-di-GMP catalytic enzymes are commonly mutated during chronic infections where opportunists display enhanced resistance to phagocytosis and antibiotics. Our lab uses an emergent multicellular trait in the model organism Pseudomonas fluorescens Pf0-1 to study the emergence of c-di-GMP mutations …


Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala Aug 2022

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala

All Dissertations

Electrostatics plays an essential role in molecular biology. Modeling electrostatics in molecular biology is complicated due to the water phase, mobile ions, and irregularly shaped inhomogeneous biological macromolecules. This dissertation presents the popular DelPhi package that solves PBE and delivers the electrostatic potential distribution of biomolecules. We used the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase and demonstrated that the first-principles method could also model the binding. This dissertation also reflects the use of existing computational approaches to model the effects of Single Amino Acid Variations (SAVs) to reveal molecular mechanisms …


In Silico Characterization Of Protein-Protein Interactions Mediated By Short Linear Motifs, Heidy Elkhaligy Jun 2022

In Silico Characterization Of Protein-Protein Interactions Mediated By Short Linear Motifs, Heidy Elkhaligy

FIU Electronic Theses and Dissertations

Short linear motifs (SLiMs), often found in intrinsically disordered regions (IDPs), can initiate protein-protein interactions in eukaryotes. Although pathogens tend to have less disorder than eukaryotes, their proteins alter host cellular function through molecular mimicry of SLiMs. The first objective was to study sequence-based structure properties of viral SLiMs in the ELM database and the conservation of selected viral motifs involved in the virus life cycle. The second objective was to compare the structural features for SliMs in pathogens and eukaryotes in the ELM database. Our analysis showed that many viral SliMs are not found in IDPs, particularly glycosylation motifs. …


Characterizing The Transcriptome Of Sirt6-Deficient Aortic Smooth Muscle Cells, Ryan J. Wong Jun 2022

Characterizing The Transcriptome Of Sirt6-Deficient Aortic Smooth Muscle Cells, Ryan J. Wong

Electronic Thesis and Dissertation Repository

Several vascular diseases are marked by dysfunctional vascular smooth muscle cells (VSMCs). Our group has found that the knockout of the NAD+-dependent histone deacetylase sirtuin 6 (Sirt6), specifically in VSMCs, increases oxidative stress-induced DNA damage, inflammation, and aortic aneurysms in mice. To study the molecular mechanisms that drive VSMC dysfunction in Sirt6-deficiency, I established a primary culture model of Sirt6 deletion in VSMCs with Cre-lox technology. Through RNA sequencing of Sirt6-deficient VSMCs, we have identified modest but coordinated upregulations in transcripts involved in nucleosome assembly, inflammation, cell death, and autoimmunity. Immunostaining in histological sections of VSMC-specific …


Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer Jun 2022

Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer

Dissertations, Theses, and Capstone Projects

The description of a complex system like gene regulation of a cell or a brain of an animal in terms of the dynamics of each individual element is an insurmountable task due to the complexity of interactions and the scores of associated parameters. Recent decades brought about the description of these systems that employs network models. In such models the entire system is represented by a graph encapsulating a set of independently functioning objects and their interactions. This creates a level of abstraction that makes the analysis of such large scale system possible. Common practice is to draw conclusions about …


A Review Of Current Methods In Avian Dietary Analysis And Their Integrated Application To Characterize The Trophic Niche Of Louisiana Waterthrush (Parkesia Motacilla)., Brandon Hoenig May 2022

A Review Of Current Methods In Avian Dietary Analysis And Their Integrated Application To Characterize The Trophic Niche Of Louisiana Waterthrush (Parkesia Motacilla)., Brandon Hoenig

Electronic Theses and Dissertations

Characterizing a species’ dietary composition presents an avenue to understand many facets of its ecological niche and can provide essential information for the species’ long-term conservation. To date, the vast majority of diet studies have relied on direct identification of prey during foraging observations or from diet samples to characterize the dietary habits of birds. However, advancements in laboratory-based approaches have revolutionized the field of trophic ecology by allowing researchers to indirectly infer dietary habits with higher resolution across greater time scales. Here, I apply two of these laboratory-based techniques, namely DNA metabarcoding and stable isotope analysis, to characterize the …


Mechanisms By Which Xenorhabdus Nematophila Interacts With Hosts Using Integrated -Omics Approaches, Nicholas C. Mucci May 2022

Mechanisms By Which Xenorhabdus Nematophila Interacts With Hosts Using Integrated -Omics Approaches, Nicholas C. Mucci

Doctoral Dissertations

Nearly all organisms exist in proximity to microbes. These microbes perform most of the essential metabolic processes necessary for homeostasis, forming the nearly hidden support system of Earth. Microbial symbiosis, which is defined as the long-term physical association between host and microbes, relies on communication between the microbial community and their host organism. These interactions among higher order organisms (such as animals, plants, and fungi) and their bacteria links metabolic processes between interkingdom consortia. Many questions on microbial behavior within a host remain poorly understood, such as the colonization efficiency among different microbial species, or how environmental context changes their …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


Proteomic Analysis Of The Expression Of Masp1 Dragline Silk Protein In E. Coli, Sophie Rae Pazzo, Rajan Amit Patel, Kamrin Athwal, Edward Kim Apr 2022

Proteomic Analysis Of The Expression Of Masp1 Dragline Silk Protein In E. Coli, Sophie Rae Pazzo, Rajan Amit Patel, Kamrin Athwal, Edward Kim

Pacific Undergraduate Research and Creativity Conference (PURCC)

No abstract provided.


Annual Faculty Research Symposium 2022, Oakwood University Apr 2022

Annual Faculty Research Symposium 2022, Oakwood University

Proceedings

No abstract provided.


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …


Cbp60-Db: An Alphafold-Predicted Plant Kingdom-Wide Database Of The Calmodulin-Binding Protein 60 (Cbp60) Protein Family With A Novel Structural Clustering Algorithm, Keaun Amani, Vanessa Shivnauth, Christian Castroverde Jan 2022

Cbp60-Db: An Alphafold-Predicted Plant Kingdom-Wide Database Of The Calmodulin-Binding Protein 60 (Cbp60) Protein Family With A Novel Structural Clustering Algorithm, Keaun Amani, Vanessa Shivnauth, Christian Castroverde

Biology Faculty Publications

Molecular genetic analyses in the model species Arabidopsis thaliana have demonstrated the major roles of different CAM-BINDING PROTEIN 60 (CBP60) proteins in growth, stress signaling, and immune responses. Prominently, CBP60g and SARD1 are paralogous CBP60 transcription factors that regulate numerous components of the immune system, such as cell surface and intracellular immune receptors, MAP kinases, WRKY transcription factors, and biosynthetic enzymes for immunity-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). However, their function, regulation and diversification in most species remain unclear. Here we have created CBP60-DB, a structural and bioinformatic database that comprehensively characterized 1052 CBP60 gene homologs …


An Integrative Investigation Of The Synechococcus A/B Clade During Adaptive Radiation At The Upper Thermal Limit Of Phototrophy, Christopher L. Pierpont Jan 2022

An Integrative Investigation Of The Synechococcus A/B Clade During Adaptive Radiation At The Upper Thermal Limit Of Phototrophy, Christopher L. Pierpont

Graduate Student Theses, Dissertations, & Professional Papers

Thermophilic microorganisms have been scientifically observed since the early nineteenth century and have spurred many questions about the limits of life and the capacity of organisms to survive extreme conditions. Decades of research on thermophile proteins and genomes have yielded several proposed correlates of temperature that may contribute to adaptation of bacteria and archaea to high temperature. However, many of the generalizations reported are drawn from analyses of deeply divergent taxa or from individual case studies in isolation from mesophilic relatives. Members of the Synechococcus A/B (SynAB) group are the only cyanobacteria with members able to grow above 65 °C …


Improved Radiation Expression Profiling In Blood By Sequential Application Of Sensitive And Specific Gene Signatures, Eliseos J. Mucaki, Ben C. Shirley, Peter K. Rogan Oct 2021

Improved Radiation Expression Profiling In Blood By Sequential Application Of Sensitive And Specific Gene Signatures, Eliseos J. Mucaki, Ben C. Shirley, Peter K. Rogan

Biochemistry Publications

Purpose. Combinations of expressed genes can discriminate radiation-exposed from normal control blood samples by machine learning based signatures (with 8 to 20% misclassification rates). These signatures can quantify therapeutically-relevant as well as accidental radiation exposures. The prodromal symptoms of Acute Radiation Syndrome (ARS) overlap those present in Influenza and Dengue Fever infections. Surprisingly, these human radiation signatures misclassified gene expression profiles of virally infected samples as false positive exposures. The present study investigates these and other confounders, and then mitigates their impact on signature accuracy.

Methods. This study investigated recall by previous and novel radiation signatures independently derived …


Human 5’-Tailed Mirtrons Are Processed By Rnasep, Mohammad Farid Zia Oct 2021

Human 5’-Tailed Mirtrons Are Processed By Rnasep, Mohammad Farid Zia

Dissertations

Approximately a thousand microRNAs (miRNAs) are documented from human cells. A third appear to transit non-canonical pathways that typically bypass processing by Drosha, the dedicated nuclear miRNA producing enzyme. The largest class of non-canonical miRNAs are mirtrons which eschew Drosha to mature through spliceosome activity. While mirtrons are found in several configurations, the vast majority of human mirtron species are 5’-tailed. For these mirtrons, a 3’ splice site defines the 3’ end of their hairpin precursor while a “tail” of variable length separates the 5’ base of the hairpin from the nearest splice site. How this tail is removed is …


Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


A Tissue Specific Transcriptomic, Proteomic And Phospho-Proteomic Atlas Of The Translational Machinery Of Arabidopsis Thaliana, Abdullah Salim May 2021

A Tissue Specific Transcriptomic, Proteomic And Phospho-Proteomic Atlas Of The Translational Machinery Of Arabidopsis Thaliana, Abdullah Salim

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Gene expression encompasses the flow of genetic information from DNA to mRNA (transcription) and from mRNA to protein (translation) along with the regulatory mechanisms underlying these processes. Omics technologies offer a powerful toolset with which to study gene expression at each of these stages. A recently published dataset integrating transcriptomic, proteomic and phospho-proteomic measurements from 30 Arabidopsis thaliana tissues provides a unique resource to explore gene expression.1 The translational machinery (the ribosome, and its initiation, elongation, and termination factors) are a core component in gene expression. Defects in translation can be lethal or lead to major developmental defects and …