Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut Oct 2023

Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut

Chemistry & Biochemistry Theses & Dissertations

Cancer continues to be the leading global cause of death, with challenges in early diagnosis, drug resistance, non-specific drug targeting, and cancer recurrence and metastasis posing formidable obstacles in cancer therapy. In this context, Prostate Apoptosis Response-4 (Par-4), a pro-apoptotic tumor suppressor protein, emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells, thereby minimizing the drug-associated adverse effects. However, a comprehensive understanding of the structural features of Par-4, specifically the caspase-cleaved fragment (cl-Par-4), is crucial for therapeutic advancements.

This dissertation investigated the effects of various ions, both monovalent and divalent, on the …


E-Cadherin Force Transmission And Stiffness Sensing, Mazen Mezher May 2023

E-Cadherin Force Transmission And Stiffness Sensing, Mazen Mezher

Mechanical & Aerospace Engineering Theses & Dissertations

E-cadherin is the chief mediator of cell-cell adhesion between epithelial cells and is a known mechanosensor. Force transmission and stiffness sensing are two crucial aspects of E-cadherin mechanobiology.

E-cadherin has an extracellular adhesive region, a transmembrane region and an intracellular region that binds to adhesion-associated proteins. Here, we assessed how different factors affect the level of force transmission (i) from inside the cell such as adhesion-associated proteins, (ii) on the cell membrane, such as growth factor receptors and (iii) outside the cell, such as different binding partners in adhesion. To study the level of force transmission inside the cell, we …