Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Old Dominion University

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 122

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Comparison Of In Vitro Studies Between Cobalt(Iii) And Copper(Ii) Complexes With Thiosemicarbazone Ligands To Treat Triple Negative Breast Cancer, Duaa R. Alajroush, Chloe B. Smith, Brittney F. Anderson, Ifeoluwa T. Oyeyemi, Stephen J. Beebe, Alvin A. Holder Mar 2024

A Comparison Of In Vitro Studies Between Cobalt(Iii) And Copper(Ii) Complexes With Thiosemicarbazone Ligands To Treat Triple Negative Breast Cancer, Duaa R. Alajroush, Chloe B. Smith, Brittney F. Anderson, Ifeoluwa T. Oyeyemi, Stephen J. Beebe, Alvin A. Holder

Undergraduate Research Symposium

Triple negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer, and disproportionately affects African American women. TNBC cells lack the common hormone receptors that many pre-existing cancer treatments target. Fortunately, metal-based complexes with thiosemicarbazone ligands have gained significant attention for their potential as anti-cancer agents. Cobalt(III) complex ([Co(phen)2(MeATSC)](NO3)3•1.5H2O•C2H5OH]) and Copper(II) complex ([Cu(acetylethTSC)Cl]Cl•0.25C2H5OH) specifically have properties of high toxicity, which can contribute to decreased cancer cell activity. The effects of these complexes are currently being investigated on cancerous and non-cancerous breast cell lines. The cytotoxic effect of the cobalt(lll) complex and the copper(ll) complex was analyzed …


Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut Oct 2023

Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut

Chemistry & Biochemistry Theses & Dissertations

Cancer continues to be the leading global cause of death, with challenges in early diagnosis, drug resistance, non-specific drug targeting, and cancer recurrence and metastasis posing formidable obstacles in cancer therapy. In this context, Prostate Apoptosis Response-4 (Par-4), a pro-apoptotic tumor suppressor protein, emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells, thereby minimizing the drug-associated adverse effects. However, a comprehensive understanding of the structural features of Par-4, specifically the caspase-cleaved fragment (cl-Par-4), is crucial for therapeutic advancements.

This dissertation investigated the effects of various ions, both monovalent and divalent, on the …


E-Cadherin Force Transmission And Stiffness Sensing, Mazen Mezher May 2023

E-Cadherin Force Transmission And Stiffness Sensing, Mazen Mezher

Mechanical & Aerospace Engineering Theses & Dissertations

E-cadherin is the chief mediator of cell-cell adhesion between epithelial cells and is a known mechanosensor. Force transmission and stiffness sensing are two crucial aspects of E-cadherin mechanobiology.

E-cadherin has an extracellular adhesive region, a transmembrane region and an intracellular region that binds to adhesion-associated proteins. Here, we assessed how different factors affect the level of force transmission (i) from inside the cell such as adhesion-associated proteins, (ii) on the cell membrane, such as growth factor receptors and (iii) outside the cell, such as different binding partners in adhesion. To study the level of force transmission inside the cell, we …


Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov Mar 2022

Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov

Chemistry & Biochemistry Faculty Publications

n the present study, natural phaeosphaeride A (PPA) derivatives are synthesized. Anti-tumor studies are carried out on the PC3, K562, HCT-116, THP-1, MCF-7, A549, NCI-H929, Jurkat, and RPMI8226 tumor cell lines, and on the human embryonic kidney (HEK293) cell line. All the compounds synthesized turned out to have better efficacy than PPA towards the tumor cell lines listed. Among them, three compounds exhibited an ability to overcome the drug resistance of tumor cells associated with the overexpression of the P-glycoprotein by modulating the work of this transporter. Luminex xMAP technology was used to assess the effect of five synthesized compounds …


Cyclophilin D Is A Sensor Of Nano-Pulse Stimulation, Brittney Ruedlinger, Bani Hani Maisoun, Lucas Potter, Nicola Lai, Stephen J. Beebe Apr 2021

Cyclophilin D Is A Sensor Of Nano-Pulse Stimulation, Brittney Ruedlinger, Bani Hani Maisoun, Lucas Potter, Nicola Lai, Stephen J. Beebe

The Graduate School Posters

Nano-Pulse Stimulation (NPS), a pulsed power-derived technology, stimulates structural and functional changes in plasma membranes and cellular organelles. NPS induces a Ca2+ influx and opening of the mitochondrial permeability transition pore (mPTP) that dissipates the mitochondrial membrane potential (ΔΨm) and, when sustained, induces regulated cell death. Here we show that in rat cardiomyoblasts (H9C2) cyclophilin D (CypD) is a mitochondrial sensor for NPS as defined by observations that loss of ΔΨm is Ca2+ and mitochondrial reactive oxygen species (mROS) dependent and cyclosporin A (CsA)-sensitive, which are diagnostic qualities for effects on CypD and the mPTP. …


Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Apr 2021

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. We have shown that this 38 kDa full-length Par-4 (Fl-Par-4) protein is predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate a 24 kDa functionally active cleaved Par-4 (cl-Par-4) fragment. The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells. Our laboratory is interested in how the disorder-order balance within Fl-Par-4 and cl-Par-4 may be related to the balance between cell survival and cell death. Currently, we are using biophysical techniques such as circular …


Biomechanical And Biophysical Properties Of Breast Cancer Cells Under Varying Glycemic Regimens, Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra Nov 2020

Biomechanical And Biophysical Properties Of Breast Cancer Cells Under Varying Glycemic Regimens, Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra

Electrical & Computer Engineering Faculty Publications

Diabetes accelerates cancer cell proliferation and metastasis, particularly for cancers of the pancreas, liver, breast, colon, and skin. While pathways linking the 2 disease conditions have been explored extensively, there is a lack of information on whether there could be cytoarchitectural changes induced by glucose which predispose cancer cells to aggressive phenotypes. It was thus hypothesized that exposure to diabetes/high glucose alters the biomechanical and biophysical properties of cancer cells more than the normal cells, which aids in advancing the cancer. For this study, atomic force microscopy indentation was used through microscale probing of multiple human breast cancer cells (MCF-7, …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee Jun 2020

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for …


Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu May 2020

Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells and cause multidrug resistance (MDR), which results in an urgent need for new and more effective therapeutic agents. In this study, we used three different sized antibiotic nanocarriers to study their mode of action and their size-dependent inhibitory effects against Escherichia coli (E. coli). Antibiotic nanocarriers (AgMUNH–Oflx NPs) with 8.6 × 102, 9.4 × 103 and 6.5 × 105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer …


Npgreat: Hybrid Assembly Of Human Subtelomeres With The Use Of Nanopore And Linked-Read Datasets, Eleni Adam, Desh Ranjan, Harold Riethman Apr 2020

Npgreat: Hybrid Assembly Of Human Subtelomeres With The Use Of Nanopore And Linked-Read Datasets, Eleni Adam, Desh Ranjan, Harold Riethman

College of Sciences Posters

The telomeres are vitally important regions that are located at the tips of the chromosomes. Their dysfunction, caused by length shortening can lead to senescent cells, which in turn cause age-related diseases, including cancer. The subtelomeres, located next to the telomeres, possess the critical role of regulating the adjacent telomere lengths. Even after many years of research, human subtelomeres have proven to be very hard to assemble due to their morphology. In order to overcome these problems, the hybrid assembly method we develop utilizes two of the latest available types of data, which complement each other: Linked-Reads and ultralong Nanopore …


Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali Jul 2019

Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali

Mechanical & Aerospace Engineering Theses & Dissertations

In epithelial tissues, epithelial cells adhere to each other as well as to the underlying extra-cellular matrix (ECM). E-cadherin-based intercellular junctions play an important role in tissue integrity. These junctions experience cell-generated mechanical forces via apparent adaptor proteins such as beta (β) catenin, alpha (α) catenin and vinculin. Abnormalities in these junctions may result in skin related diseases and cancers. Here, I devised methods to determine the endogenous intercellular force within cell pairs as well as in large epithelial islands. I further ascertained the factors that affect the level of inter-cellular tension.

Experiments with pairs of epithelial cells exogenously expressing …


The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller Jul 2019

The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller

Biological Sciences Theses & Dissertations

Foxp3+ regulatory T cells (TR) are an immunosuppressive subset of CD4+ T cells that maintain homeostasis of the immune system. They are sustained by the interaction between the Major Histocompatibility Complex (MHC) molecules present on antigen presenting dendritic cells and the T Cell Receptor (TCR) expressed on TR cells that is specific for the MHC loaded with an antigenic peptide. Here, we show that in addition to MHC/TCR interaction, Connexin-43 (Cx43) expression by dendritic cells is required to maintain the TR cell population. CD11c+ dendritic cells represent a major subset of antigen presenting cells. …


Study Of The Effects Of Silver Ions And Silver Nanoparticles On Embryonic Development, Martha Sharisha Johnson Apr 2019

Study Of The Effects Of Silver Ions And Silver Nanoparticles On Embryonic Development, Martha Sharisha Johnson

Biomedical Sciences Theses & Dissertations

This dissertation focuses on the study of the toxicity of metal nanoparticles (NPs) and their ions on the development of zebrafish embryos, aiming to understand unique biological effects of NPs and ions, and design new in vivo assays to characterize the toxicity of these metal NPs and metal ions. Currently, the underlying molecular mechanisms of biological effects of nanomaterials are partially understood. Some studies assume that the toxic effects of NPs can be attributed to the release of their ions. We investigate the effects of silver NPs (Ag NPs) and silver ions (Ag+ ions) on the embryonic development of zebrafish …


Non-Contact Trapping And Stretching Of Biological Cells Using Dual-Beam Optical Stretcher On Microfluidic Platform, Aotuo Dong, Balaadithya Uppalapati, Shariful Islam, Brandon Gibbs, Ganesan Kamatchi, Sacharia Albin, Makarand Deo Jan 2019

Non-Contact Trapping And Stretching Of Biological Cells Using Dual-Beam Optical Stretcher On Microfluidic Platform, Aotuo Dong, Balaadithya Uppalapati, Shariful Islam, Brandon Gibbs, Ganesan Kamatchi, Sacharia Albin, Makarand Deo

Electrical & Computer Engineering Faculty Publications

Optical stretcher is a tool in which two counter-propagating, slightly diverging, and identical laser beams are used to trap and axially stretch microparticles in the path of light. In this work, we utilized the dual-beam optical stretcher setup to trap and stretch human embryonic kidney (HEK) cells and mammalian breast cancer (MBC) cells. Experiments were performed by exposing the HEK cells to counter-propagating laser beams for 30 seconds at powers ranging from 100 mW to 561 mW. It was observed that the percentage of cell deformation increased from 16.7% at 100 mW to 40.5% at 561 mW optical power. The …


Synthesis And Biological Evaluation Of Phaeosphaeride A Derivatives As Antitumor Agents, Victoria Abzianidze, Petr Beltyukov, Sofya Zakharenkova, Natalia Moiseeva, Jennifer Mejia, Alvin Holder, Yuri Trishin, Alexander Berestetskiy, Victor Kuznetsov Nov 2018

Synthesis And Biological Evaluation Of Phaeosphaeride A Derivatives As Antitumor Agents, Victoria Abzianidze, Petr Beltyukov, Sofya Zakharenkova, Natalia Moiseeva, Jennifer Mejia, Alvin Holder, Yuri Trishin, Alexander Berestetskiy, Victor Kuznetsov

Chemistry & Biochemistry Faculty Publications

New derivatives of phaeosphaeride A (PPA) were synthesized and characterized. Anti-tumor activity studies were carried out on the HCT-116, PC3, MCF-7, A549, К562, NCI-Н929, Jurkat, THP-1, RPMI8228 tumor cell lines, and on the HEF cell line. All of the compounds synthesized were found to have better efficacy than PPA towards the tumor cell lines mentioned. Compound 6 was potent against six cancer cell lines, HCT-116, PC-3, K562, NCI-H929, Jurkat, and RPMI8226, showing a 47, 13.5, 16, 4, 1.5, and 7-fold increase in anticancer activity comparative to those of etoposide, respectively. Compound 1 possessed selectivity toward the NCI-H929 cell line (IC …


Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He Apr 2018

Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He

Computer Science Faculty Publications

Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin …


Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong Feb 2018

Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong

Bioelectrics Publications

In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge …


Coordination Of Different Ligands To Copper(Ii) And Cobalt(Iii) Metal Centers Enhances Zika Virus And Dengue Virus Loads In Both Arthropod Cells And Human Keratinocytes, Shovan Dutta, Michael J. Celestine, Supreet Khanal, Alexis Huddleston, Colin Simms, Jessa Faye Arca, Amlam Mitra, Loree Heller, Piotr Kraj, Michael Ledizet, John F. Anderson, Girish Neelakanta, Alvin A. Holder, Hameeda Sultana Jan 2018

Coordination Of Different Ligands To Copper(Ii) And Cobalt(Iii) Metal Centers Enhances Zika Virus And Dengue Virus Loads In Both Arthropod Cells And Human Keratinocytes, Shovan Dutta, Michael J. Celestine, Supreet Khanal, Alexis Huddleston, Colin Simms, Jessa Faye Arca, Amlam Mitra, Loree Heller, Piotr Kraj, Michael Ledizet, John F. Anderson, Girish Neelakanta, Alvin A. Holder, Hameeda Sultana

Biological Sciences Faculty Publications

Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …


Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with …


Cold Atmospheric Plasma As A Potential Tool For Multiple Myeloma Treatment, Dehui Xu, Yujing Xu, Qingjie Cui, Dingxin Liu, Zhijie Liu, Xiaohua Wang, Yanjie Yang, Niaojuan Feng, Rong Liang, Hailan Chen, Kai Ye, Michael G. Kong Jan 2018

Cold Atmospheric Plasma As A Potential Tool For Multiple Myeloma Treatment, Dehui Xu, Yujing Xu, Qingjie Cui, Dingxin Liu, Zhijie Liu, Xiaohua Wang, Yanjie Yang, Niaojuan Feng, Rong Liang, Hailan Chen, Kai Ye, Michael G. Kong

Bioelectrics Publications

Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response …


Microstructure Of Attachment Mechanisms Of Newly Hatched Larvae Of Four Cyprinid Species With Comments On Terminology, George E. Maurakis, Eugene G. Maurakis Oct 2017

Microstructure Of Attachment Mechanisms Of Newly Hatched Larvae Of Four Cyprinid Species With Comments On Terminology, George E. Maurakis, Eugene G. Maurakis

Virginia Journal of Science

An adhesive organ is a prominent, protruding mucus secreting gland that is used by newly hatched tadpoles and larvae of some fishes to attach to aquatic vegetation. The objective of this research is to test the hypothesis that newly hatched cyprinid larvae of Hybognathus hankinsoni, Notemigonus crysoleucas, Cyprinus carpio and Gila atraria contain cephalic adhesive organs. Newly hatched larvae of Semotilus atromaculatus, which do not attach to submerged aquatic vegetation, were used as the control. SEM examination of newly hatched larvae indicate there were no adhesive organs on the control species (S. atromaculatus) or test species …


Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu Feb 2017

Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu

Mechanical & Aerospace Engineering Faculty Publications

The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na, Ca2+, K channels). …


Dna Repair Deficiency In Huntington's Disease Fibroblasts And Induced Pluripotent Stem Cells, Peter Anthony Mollica Oct 2015

Dna Repair Deficiency In Huntington's Disease Fibroblasts And Induced Pluripotent Stem Cells, Peter Anthony Mollica

Biological Sciences Theses & Dissertations

Mutant huntingtin protein (mhtt)– the protein responsible for cellular dysfunction in Huntington’s disease (HD) –is a product of an expanded trinucleotide repeat (TNR) cytosine-adenine-guanine (CAG) sequence in exon 1 of the huntingtin (HTT) gene. The pathology of HD has been extensively researched; however, the mechanism by which the disease-causing TNR expansions occur in somatic cells remains elusive. Interestingly, HD has often been referred to a ‘DNA repair disease’, even though DNA repair dysfunction in situ has not been identified. We hypothesized that presence of the mhtt protein affects the expression of DNA repair genes used to address DNA repair, ultimately …


Picosecond To Terahertz Perturbation Of Interfacial Water And Electropermeabilization Of Biological Membranes, P. Thomas Vernier, Zachary A. Levine, Ming-Chak Ho, Shu Xiao, Iurii Semenov, Andrei G. Pakhomov Jan 2015

Picosecond To Terahertz Perturbation Of Interfacial Water And Electropermeabilization Of Biological Membranes, P. Thomas Vernier, Zachary A. Levine, Ming-Chak Ho, Shu Xiao, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Non-thermal probing and stimulation with subnanosecond electric pulses and terahertz electromagnetic radiation may lead to new, minimally invasive diagnostic and therapeutic procedures and to methods for remote monitoring and analysis of biological systems, including plants, animals, and humans. To effectively engineer these still-emerging tools, we need an understanding of the biophysical mechanisms underlying the responses that have been reported to these novel stimuli. We show here that subnanosecond (≤500 ps) electric pulses induce action potentials in neurons and cause calcium transients in neuroblastoma-glioma hybrid cells, and we report complementary molecular dynamics simulations of phospholipid bilayers in electric fields in which …


Altered Connexin 43 Expression Underlies Age-Dependent Decrease Of Regulatory T Cell Suppressor Function In Nonobese Diabetic Mice, Michel Kuczma, Cong-Yi Wang, Leszek Ignatowicz, Robert Gourdi, Piotr Kraj Jan 2015

Altered Connexin 43 Expression Underlies Age-Dependent Decrease Of Regulatory T Cell Suppressor Function In Nonobese Diabetic Mice, Michel Kuczma, Cong-Yi Wang, Leszek Ignatowicz, Robert Gourdi, Piotr Kraj

Biological Sciences Faculty Publications

Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell–mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (Tregs) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate Tregs in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory …


Introduction To Fifth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2015

Introduction To Fifth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This special issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the International Workshop and Postgraduate Course on Electroporation-Based Technologies and Treatments held in November 2014 in Ljubljana. This was the eighth session of what is now an annual event, first organized in 2003.


Numerical Geometry Of Map And Model Assessment, Willy Wriggers, Jing He Jan 2015

Numerical Geometry Of Map And Model Assessment, Willy Wriggers, Jing He

Mechanical & Aerospace Engineering Faculty Publications

We are describing best practices and assessment strategies for the atomic interpretation of cryo-electron microscopy (cryo-EM) maps. Multiscale numerical geometry strategies in the Situs package and in secondary structure detection software are currently evolving due to the recent increases in cryo-EM resolution. Criteria that aim to predict the accuracy of fitted atomic models at low (worse than 8 angstrom) and medium (4-8 angstrom) resolutions remain challenging. However, a high level of confidence in atomic models can be achieved by combining such criteria. The observed errors are due to map-model discrepancies and due to the effect of imperfect global docking strategies. …


Experimental And Computational Analysis Of The Synucleins, Agatha Munyanyi Jul 2014

Experimental And Computational Analysis Of The Synucleins, Agatha Munyanyi

Theses and Dissertations in Biomedical Sciences

The synuclein proteins α, β and γ which are located in the brain, have been a subject of intense research. Of particular interest is α-synuclein, which is found in misfolded forms in Lewy bodies that are associated with Parkinson's disease. Despite the efforts of researchers across the world, the physiological structure and function of the synucleins remains elusive. In recent years, highly controversial reports by some investigators indicate that in its natural form, α-synuclein exists as a tetramer instead of as an intrinsically unstructured monomer. This dissertation presents results of the experimental and computational analysis of the synucleins. First, we …