Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

2021

Institution
Keyword
Publication
Publication Type

Articles 121 - 139 of 139

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterization Of The Whale Shark (Rhincodon Typus) Melanocortin-2 Receptor, Brianne Hoglin Jan 2021

Characterization Of The Whale Shark (Rhincodon Typus) Melanocortin-2 Receptor, Brianne Hoglin

Electronic Theses and Dissertations

Among bony vertebrates, the melanocortin-2 receptor ortholog is unique among the family of five melanocortin receptors on the basis that it is dependent on its accessory protein, MRAP1, for trafficking and activation, and is selective for activation by ACTH alone. Previous studies on the MC2R orthologs of select cartilaginous fish, the elephant shark (Callorhinchus milii) and the red stingray (Dasyatis akajei), revealed divergent traits in a less obligatory relationship on MRAP1 and its ability to be activated by ACTH or the MSH-sized peptides. However, observed traits were not consistent between these two cartilaginous fish species, posing …


Development Of Endoplasmic Reticulum Targeted Probes And Red Fluorescent Probes For Detecting Zinc, Drew Maslar Jan 2021

Development Of Endoplasmic Reticulum Targeted Probes And Red Fluorescent Probes For Detecting Zinc, Drew Maslar

Electronic Theses and Dissertations

Zinc (Zn2+) is the second most abundant transition metal in the body and is important in various biological functions. Fluorescent sensors based on circularly permuted fluorescent proteins (cpFPs) have been previously made to detect labile, or unbound, Zn2+ within the cytoplasm of cells. These sensors have proven invaluable for studying Zn2+, however, these sensors are limited to their use in the cytoplasm and by the fact that only green cpFP have been utilized to create fluorescent Zn2+ sensors. In this thesis, we use a combination of peptide targeting sequences, site-directed mutagenesis, and rational design …


Fxs-Causing Point Mutations In Fmrp Disrupt Neuronal Granule Formation And Function, Emily L. Starke Jan 2021

Fxs-Causing Point Mutations In Fmrp Disrupt Neuronal Granule Formation And Function, Emily L. Starke

Electronic Theses and Dissertations

Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by the disruption of Fragile X Mental Retardation Protein (FMRP) function in neurons, affecting nearly 1 in 7,500 individuals. Although FXS typically occurs from a complete loss of FMRP expression due to a CGG trinucleotide expansion within the 5’UTR of the FMR1 gene, single nucleotide polymorphisms (SNPs) within the KH domains of FMRP have been shown to severely disrupt FMRP function. FMRP is an RNA-binding translation repressor that interacts with ~4% of the neuronal transcriptome. Many target mRNAs encode for proteins important for regulating synaptic processes and modulate synaptic plasticity. It …


A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv Jan 2021

A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv

Theses and Dissertations

Biomaterials for use in bone regeneration and healing range from metal and metal alloy implants to hydrogel-based solutions. These materials can be optimized to increase bone healing and integration by improving the mechanical and biological properties. Regardless of the material itself, the cell-substrate interaction is key to the success of the biomaterial once implanted. Substrate surface characteristics such as roughness, wettability, and particle density are well-known contributors to a substrate’s overall osteogenic potential, and therefore the substrate's overall success. Unfortunately, it is still unknown how these substrate surface characteristics are transduced into intracellular signals by cells, preventing specific tailoring of …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs Jan 2021

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs

Theses and Dissertations--Molecular and Cellular Biochemistry

Hendra virus (HeV) and human metapneumovirus (HMPV) are negative-sense, singled-stranded RNA viruses. The paramyxovirus HeV is classified as a biosafety level 4 pathogen due to its high fatality rate and the lack of a human vaccine or antiviral treatment. HMPV is a widespread pneumovirus that causes respiratory tract infections which are particularly dangerous for young children, immunocompromised individuals, and the elderly. Like HeV, no vaccines or therapies are available to combat HMPV infections. These viruses fuse their lipid envelopes with a cell to initiate infection. Blocking cell entry is a promising approach for antiviral development, and many vaccines are designed …


Special Issue: Shiga Toxin-Producing Escherichia Coli, Rodney A. Moxley Jan 2021

Special Issue: Shiga Toxin-Producing Escherichia Coli, Rodney A. Moxley

School of Veterinary and Biomedical Sciences: Faculty Publications

Globally, Shiga toxin-producing Escherichia coli (STEC) is an important cause of diarrheal disease, most notably hemorrhagic colitis, and post-diarrheal sequela, such as hemolytic-uremic syndrome (HUS) [1]. Cattle are a major reservoir of STEC, with approx- imately half of the cases in humans attributable to foodborne exposure [2]. Prevention of human illness has mainly been through food safety measures [2]. Despite extensive research, no other generally accepted and effective preventive measures or therapies for STEC infections in human patients are available [3]. Many questions remain about STEC virulence factors, pathogenesis, detection, and other aspects that necessitate a continua- tion of basic …


From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest Jan 2021

From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest

Graduate Theses, Dissertations, and Problem Reports

Photoreceptors are specialized neuroepithelial cells which are optimized for efficient capture of light and initiation of visual transduction. These cells have several compartments which are very important for proper visual function and segregation of cellular processes, including the outer segment (OS), inner segment (IS), nucleus, and synapse. The IS houses all of the cellular organelles and biosynthetic molecular machinery the cell requires and is the site of protein synthesis. The light-sensing OS is a highly modified, primary cilium, which contains many stacks of double membranous discs which house proteins required for formation and maintenance of OS structure, as well as …


Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens Jan 2021

Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens

Theses and Dissertations--Chemistry

Development of stable gold-based complexes has been a rapidly advancing field due to the popularity of gold complexes, particularly for use in biomedical research and catalytic transformations. Given that auranofin, a gold(I) complex with FDA approval for the treatment of rheumatoid arthritis is used in the clinic, the development of stable gold-based molecules of clinical relevance is urgently needed. Herein are reported, synthetic strategies used for the development of new classes of gold(I) and gold(III) complexes for advancement in mitochondrial modulation for use as chemotherapeutics as well as application to gold catalysis due to the unique geometry of complexes presented …


Dcaf14 Promotes Stalled Fork Stability To Maintain Genome Integrity, Arik Townsend, Gabriella Lora, Justin Engel, Neysha Tirado-Class, Huzefa Dungrawala Jan 2021

Dcaf14 Promotes Stalled Fork Stability To Maintain Genome Integrity, Arik Townsend, Gabriella Lora, Justin Engel, Neysha Tirado-Class, Huzefa Dungrawala

Molecular Biosciences Faculty Publications

No abstract provided.


Tracking The Subcellular Localization Of Surface Proteins In Staphylococcus Aureus By Immunofluorescence Microscopy, Salvatore J. Scaffidi, Mac A. Shebes, Wenqi Yu Jan 2021

Tracking The Subcellular Localization Of Surface Proteins In Staphylococcus Aureus By Immunofluorescence Microscopy, Salvatore J. Scaffidi, Mac A. Shebes, Wenqi Yu

Molecular Biosciences Faculty Publications

Surface proteins of Staphylococcus aureus and other Gram-positive bacteria play essential roles in bacterial colonization and host-microbe interactions. Surface protein precursors containing a YSIRK/GXXS signal peptide are translocated across the septal membrane at mid-cell, anchored to the cell wall peptidoglycan at the cross-wall compartment, and presented on the new hemispheres of the daughter cells following cell division. After several generations of cell division, these surface proteins will eventually cover the entire cell surface. To understand how these proteins travel from the bacterial cytoplasm to the cell surface, we describe a series of immunofluorescence microscopy protocols designed to detect the stepwise …


Leveraging Chemical And Computational Biology To Probe The Cellulose Synthase Complex, B. Kirtley Amos Jan 2021

Leveraging Chemical And Computational Biology To Probe The Cellulose Synthase Complex, B. Kirtley Amos

Theses and Dissertations--Plant and Soil Sciences

Cellular expansion in plants is a complex process driven by the constraint of internal cellular turgor pressure by an expansible cell wall. The main structural element of the cell wall is cellulose. Cellulose is vital to plant fitness and the protein complex that creates it is an excellent target for small molecule inhibition to create herbicides. In the following thesis many small molecules (SMs) from a diverse library were screened in search of new cellulose biosynthesis inhibitors (CBI). Loss of cellular expansion was the primary phenotype used to search for putative CBIs. As such, this was approached in a forward …


College Of Natural Sciences 2021 Year-End Publication, College Of Natural Sciences Jan 2021

College Of Natural Sciences 2021 Year-End Publication, College Of Natural Sciences

College of Natural Sciences Newsletters and Reports

Page 2 Welcome, Table of Contents
Page 3 Our Departments: Highlights From 2021
Page 4 Overview of the College
Page 5 Overview of Bold & Blue
Pages 6, 7 Announcing the First Endowed Professorship in the College of Natural Sciences
Page 8 Spooky Science, Astronomy Outreach, SDSU Chemistry Research Features on Journal Cover
Page 9 Students Win Business Plan Competition With Aims to Improve Shelf Life of Produce, Summer Researchers
Page 10 NIH Grant Helps Unravel Rare Inflammatory Genetic Disorders, International Excellence in South Dakota
Page 11 The Next Frontier of Science Education: Virtual Reality, SDSU Researchers Uncover how Cancer …


The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham Jan 2021

The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham

Student Research Poster Presentations 2021

Schwann cells are a vital component of the Peripheral Nervous System and aid in the repair of axons following injury. The regulation of Schwann cell growth in vitro is facilitated by heregulin, a neuron-secreted growth factor, and an unknown mitogen that activates the cyclic adenosine monophosphate (cAMP) pathway. The abundance of intracellular cAMP is regulated by a family of enzymes called phosphodiesterases (PDEs). PDE inhibitors such as rolipram have therapeutic potential in various disorders and function by increasing the levels of intracellular cAMP. A-Kinase anchoring proteins (AKAPs), a family of scaffolding proteins that belong to the cAMP/Protein Kinase A (PKA) …


The Effect Of Cxcl12 Ligand On Internalization And Dimerization Of Cxcr4 Receptors In Live Cells, Loga Iyer Jan 2021

The Effect Of Cxcl12 Ligand On Internalization And Dimerization Of Cxcr4 Receptors In Live Cells, Loga Iyer

Williams Honors College, Honors Research Projects

The primary objective of this project was to determine the effect of CXCL12 ligand binding on the CXCR4 receptor, specifically, how it would impact receptor internalization and dimerization. The CXCL12 ligand derives from the stromal cell-derived alpha family [8]. The CXCR4 receptors, known as C-X-C chemokine receptor type 4 play an essential role in controlling cell proliferation. When misregulated, these receptors can drive tumorigenesis and are thus important targets of cancer therapy. These G protein-coupled receptors stimulate a cascade of signaling pathways in specific tissues [1]. These pathways include the positive transcriptional control of CXCR4 via the Nuclear Respiratory Factor-1 …


Study Of Primary Cilium Structure And Intraflagellar Transport, Shufeng Sun Jan 2021

Study Of Primary Cilium Structure And Intraflagellar Transport, Shufeng Sun

Legacy Theses & Dissertations (2009 - 2024)

Primary cilia are hair-like protrusions that stem from the basal bodies in the cytoplasm and extend into the extracellular space to sense signals. Intraflagellar transport (IFT) functions to transport cargo molecules into and out of the ciliary compartment to assemble, maintain, and disassemble the cilia. Accurate knowledge of the three-dimensional (3D) structure of primary cilia and precise details of the IFT profile is the foundation for understanding the sensory functions of primary cilia. This work covers three aspects of primary cilia. Firstly, we obtained and analyzed the overall 3D architecture of the complete primary cilia axoneme region using serial section …


The Maintenance Of Genomic Stability: Impacts Of The Loss Of Kif18a, Leslie Anne Sepaniac Jan 2021

The Maintenance Of Genomic Stability: Impacts Of The Loss Of Kif18a, Leslie Anne Sepaniac

Graduate College Dissertations and Theses

Regulated and repeated cell division is necessary for the development, growth, and reproduction of multicellular organisms. A central purpose of mitosis is to faithfully pass hereditary information from one cell onto two genetically identical daughter cells, thus maintaining genomic stability. Cells employ several mechanisms for maintaining genomic stability, including well-characterized cell cycle checkpoints. However, chromosome segregation errors can occur in spite of these regulatory mechanisms. Such errors can result in an improper number of chromosomes being distributed to daughter cells – termed aneuploidy – or improper localization of chromosomes into separate satellite nuclei – termed micronuclei. What, if any, additional …


Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru Jan 2021

Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru

Auctus: The Journal of Undergraduate Research and Creative Scholarship

Peto’s Paradox is defined as the lack of correlation between larger animals and cancer risk. Under the assumption that all cells have equal risk of becoming cancerous, larger animals should have greater rates of cancer. However, the inverse is true. Determining the cause of this variation may allow a supplemental approach to cancer treatment. A combination of two reasons may account for this correlation including hypertumors and metabolism. Hypertumors, or cheater cells, are hypothesized to suppress cancer growth through spontaneous autophagic degradation and overexpression of the RAS g-protein. Both of these characteristics are exhibited in Neuroblastomas. An anticancer drug used …


Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha Jan 2021

Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha

Theses and Dissertations--Chemistry

The Resistant Nodulation Division (RND) super family member, tripartite AcrA-AcrB-TolC efflux pump, is a major contributor in conferring multidrug-resistance in Escherichia coli. The structure of the pump complex, and drug translocation by functional rotation mechanism have been widely studied. Despite of all these data, the dynamics of the assembly process of the pump and AcrB during functional rotation in the process of drug efflux remains poorly understood. My thesis focuses on understanding the pump assembly process, dynamics of AcrB in functional rotation mechanism, and also investigate the mechanism of degradation of AcrB facilitated by a C-terminal ssrA tag.

In the …