Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 55

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner Feb 2024

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner

Dissertations, Theses, and Capstone Projects

The examination of the cell cycle carries significant implications for the biology, health, and overall existence of all living things. These implications span from the development and growth of these organisms to the aging process and cancer, as well as the potential of stem cell therapies to repair diseases and injuries. Numerous proteins of the cell cycle are essential for cellular division and proliferation and are widely conserved over the course of evolution. In this work, we aimed to investigate the molecular processes of protein-protein interactions in cell cycle proteins, centering on two key players: Cdc6 in budding yeast and …


Examining Transcriptional Regulators During Muscle Development In Drosophila Melanogaster, Chaamy Yapa May 2023

Examining Transcriptional Regulators During Muscle Development In Drosophila Melanogaster, Chaamy Yapa

Student Theses and Dissertations

In Drosophila melanogaster embryos, a distinct approach to study the transcriptional regulation is to examine the larval somatic muscle development. Transcription factors are essential regulatory proteins that help to control gene expression and respond to signaling pathways and various cues. Today, there are at least twenty transcription factors that have been discovered to contribute to the development of the 30 distinct larval somatic muscles in each abdominal hemisegment of Drosophila melanogaster. Several studies have already been conducted on muscle regulatory transcription factors including midline and apterous. These transcription factors were shown to control the development of muscles through mutant …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo Oct 2021

Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo

Publications and Research

Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. Highresolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, …


Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin Sep 2021

Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin

Publications and Research

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was …


Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine Sep 2021

Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine

Dissertations, Theses, and Capstone Projects

Cancer cells often lose expression of the p53 protein or express mutant forms of p53. Some of these mutant p53 proteins, called gain-of-function mutant p53, have gained oncogenic functions. Previously, our group observed mutant p53 R273H interacts with replicating DNA and upregulates the chromatin localization of several DNA replication factors including PCNA, MCM2-7, and PARP1 (termed the mtp53-PARP-MCM axis). In this thesis, we explore the contribution of mutant p53 and PARP1 in castration-resistant prostate cancer (mutant p53 P223L and V274F) and triple-negative breast cancer (mutant p53 R273H). In the castration-resistant prostate cancer cell line DU145, we examine two mutant p53 …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis Aug 2021

Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis

Publications and Research

The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Unconventional Constituents And Shared Molecular Architecture Of The Melanized Cell Wall Of C. Neoformans And Spore Wall Of S. Cerevisiae, Christine Chrissian, Coney Pei-Chin Lin, Emma Camacho, Arturo Casadevall, Aaron M. Neiman, Ruth E. Stark Dec 2020

Unconventional Constituents And Shared Molecular Architecture Of The Melanized Cell Wall Of C. Neoformans And Spore Wall Of S. Cerevisiae, Christine Chrissian, Coney Pei-Chin Lin, Emma Camacho, Arturo Casadevall, Aaron M. Neiman, Ruth E. Stark

Publications and Research

The fungal cell wall serves as the interface between the cell and the environment. Fungal cell walls are composed largely of polysaccharides, primarily glucans and chitin, though in many fungi stress-resistant cell types elaborate additional cell wall structures. Here, we use solid-state nuclear magnetic resonance spectroscopy to compare the architecture of cell wall fractions isolated from Saccharomyces cerevisiae spores and Cryptococcus neoformans melanized cells. The specialized cell walls of these two divergent fungi are highly similar in composition. Both use chitosan, the deacetylated derivative of chitin, as a scaffold on which a polyaromatic polymer, dityrosine and melanin, respectively, is assembled. …


Two And Three-Dimensional Radiographic Imaging Of Contrast Agents In Heterogeneous Live Cell Media To Understand Contrast-Induced Toxicity, Fahaneda Hassan, Aldona Gjoni, Subhendra Sarkar Oct 2020

Two And Three-Dimensional Radiographic Imaging Of Contrast Agents In Heterogeneous Live Cell Media To Understand Contrast-Induced Toxicity, Fahaneda Hassan, Aldona Gjoni, Subhendra Sarkar

Publications and Research

Radiographic imaging was done using low and high energy radiography equipment. The test hypothesis that macromolecular aggregation changes sample noise in imaging samples for optical imaging methods. Inorganic complexes scatter radiation at the molecular level and may increase the sample noise locally. At high and low photon energies in various x-ray machines, sample and background noise were gathered and compared with those from mammography systems from mammography researchers. The samples with high macromolecular aggregates were prepared using various animal cell compositions and imaged under different conditions that produced different macromolecular dynamics within the samples and thus different image-based sample noise. …


Development Of Ligand Guided Selection (Ligs) To Identify Specific Dna Aptamers Against Cell Surface Proteins, Hasan Ekrem Zumrut Jun 2020

Development Of Ligand Guided Selection (Ligs) To Identify Specific Dna Aptamers Against Cell Surface Proteins, Hasan Ekrem Zumrut

Dissertations, Theses, and Capstone Projects

Oligonucleotide aptamers (nucleic acid-based affinity reagents) are an emerging class of synthetic molecules that display high affinity and specificity towards their targets. Aptamer molecules for a target of interest are obtained using a combinatorial chemistry-based method termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX is an in vitro selection process in which a random oligonucleotide library is subjected to repeated cycles of target incubation, separation, and amplification until target-specific evolved sequences become prevalent in the library. Typically, SELEX is used against target molecules such as small molecules and proteins, in their purified state. However, aptamers selected against purified …


Probing The Limits Of Singular Gene Expression Through The Activity Of High Representation Odorant Receptor Transgenes, Eugene Lempert Jun 2020

Probing The Limits Of Singular Gene Expression Through The Activity Of High Representation Odorant Receptor Transgenes, Eugene Lempert

Dissertations, Theses, and Capstone Projects

Singular gene expression is a common phenomenon in biology, making its appearance in immunoglobulin selection, protocadherin expression, X chromosome-inactivation, random monoallelic expression, and olfactory receptor choice. Singularity involves an activation and a feedback step. The mechanisms of singular gene choice have some capacity to integrate additional member genes while still maintaining singularity, but will activate an additional member if an earlier choice was incapable of triggering the feedback step. Odorant Receptor (OR) genes are substantially divergent from each other in terms of coding sequence, promoter structure, and genomic locus, all of which plays a role in how many Olfactory Sensory …


Dictyostelium Discoideum Protein Kinase C-Orthologue Pkca Regulates The Actin Cytoskeleton Through Interaction With Phospholipase D And P21-Activated Kinase, Sean Singh Jun 2020

Dictyostelium Discoideum Protein Kinase C-Orthologue Pkca Regulates The Actin Cytoskeleton Through Interaction With Phospholipase D And P21-Activated Kinase, Sean Singh

Dissertations, Theses, and Capstone Projects

Proper regulation of the actin cytoskeleton is crucial to many cellular processes. Many of these processes are regulated by extracellular signaling cues, which direct changes in the actin cytoskeleton, resulting in changes to cellular morphology, and directed motility. The social amoeba, Dictyostelium discoideum, is used as a simple model system to study the translation of extracellular signals to the actin cytoskeleton. When starved, these unicellular amoebae undergo a multicellular developmental process characterized by a tightly regulated sequence of signaling events. This results in chemotaxis and formation of a multicellular aggregate, and ultimately cell differentiation and the formation of a fruiting …


Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin Mar 2020

Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin

Publications and Research

The elucidation of better treatments for solid tumors and especially malignant glial tumors is a priority. Better understanding of the molecular underpinnings of treatment response and resistance are critical determinants in the success for this endeavor. Recently, a battery of novel tools have surfaced that allow to interrogate tumor cell metabolism to more precise extent than this was possible in the earlier days. At the forefront of these developments are the extracellular flux and carbon tracing analyses. Through utilization of these techniques our group made the recent observation that acute and chronic c-MET inhibition drives fatty acid oxidation that in …


Through The Back Door: Proteins Escape Cells Without Conventional Permission, Michael J. Cohen Feb 2020

Through The Back Door: Proteins Escape Cells Without Conventional Permission, Michael J. Cohen

Dissertations, Theses, and Capstone Projects

Proteins secreted to the extracellular environment play a fundamental role as signals, in metabolism, and a variety of other processes. The process of secretion through the endoplasmic reticulum and Golgi to the plasma membrane is well documented, and all cargo in this pathway contains a signal peptide. However, a variety of proteins secreted from eukaryotes lack a signal peptide and are called unconventionally secreted proteins. Here we discuss known mechanisms of unconventional protein secretion, as well as model proteins which follow characterized pathways. Additionally, we summarize the roles various unconventionally secreted proteins play outside of cells and suggest criteria for …


Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam Sep 2019

Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam

Dissertations, Theses, and Capstone Projects

Hyaluronan (HA; Hyaluronic Acid), a primary scaffolding component of the brain extracellular matrix, serves as an integral structural component to the brain extracellular space (ECS). The fossorial African naked mole-rat (Heterocephalus glaber; NM-R), a mammal which lives in a low-oxygen environment and is capable of tolerating hypoxia and hypercapnia, has been shown to synthesize and sustain a unique high-molecular-mass variant of hyaluronan macromolecule (HMM-HA). This body of work highlights HA’s role in mediating the interplay between brain ECM composition, ECS structure, and cell viability.

Here we employ the NM-R as a unique animal model to observe the role of the …


Towards A Mathematical Model Of Motility Using Dictyostelium Discoideum: Proteins And Geometric Features That Regulate Bleb-Based Motility, Zully Santiago Sep 2019

Towards A Mathematical Model Of Motility Using Dictyostelium Discoideum: Proteins And Geometric Features That Regulate Bleb-Based Motility, Zully Santiago

Dissertations, Theses, and Capstone Projects

A variety of biological functions depend on actin organization. The organization of actin is tightly regulated by a plethora of extracellular and intracellular signaling, scaffolding, and actin-binding proteins. Dysfunctions in this regulation lead to immune diseases, increased susceptibility to pathogens, neurodegenerative diseases, developmental disorders, and cancer metastasis. A variety of actin-dependent processes, including cell motility, are regulated by several proteins of interest: Paxillin, a scaffolding protein; WASP, an actin nucleating protein; SCAR/WAVE, another WASP family actin nucleating protein; Talin, a cortex-to-membrane binding protein; Myosin II, an F-actin contracting motor protein; and Protein Kinase C, a protein kinase. D. discoideum cells …


Inhibition Of Mitochondrial Permeability Transition By Deletion Of The Ant Family And Cypd, Jason Karch, Michael J. Bround, Hadi Khalil, Michelle A. Sargent, Nadina Latchman, Naohiro Terada, Pablo M. Peixoto, Jeffery D. Molkentin Aug 2019

Inhibition Of Mitochondrial Permeability Transition By Deletion Of The Ant Family And Cypd, Jason Karch, Michael J. Bround, Hadi Khalil, Michelle A. Sargent, Nadina Latchman, Naohiro Terada, Pablo M. Peixoto, Jeffery D. Molkentin

Publications and Research

The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin …


The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy May 2019

The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy

Dissertations, Theses, and Capstone Projects

Cellular homeostasis is achieved by the dynamic flux in gene expression. Post-transcriptional regulation of coding and non-coding RNA offers a fast method of adapting to a changing cellular environment, including deadenylation, microRNA (miRNA) pathway, and alternative polyadenylation (APA). In this dissertation, I explored some of the mechanisms involved in the post-transcriptional regulation of gene expression. The main hypothesis in these studies is that a single APA event after DNA damage is governed by specific conditions and factors outside of current known regulators of APA, and that the resultant transcript has a role in the DNA damage response (DDR). My aims …


Putative Cellular And Molecular Roles Of Zika Virus In Fetal And Pediatric Neuropathologies, Rajendra Ghardbaran, Rajendra Ghardbaran, Latchman Somenarain Jan 2019

Putative Cellular And Molecular Roles Of Zika Virus In Fetal And Pediatric Neuropathologies, Rajendra Ghardbaran, Rajendra Ghardbaran, Latchman Somenarain

Publications and Research

Although the World Health Organization declared an end to the recent Zika virus (ZIKV) outbreak and its association with adverse fetal and pediatric outcome, on November 18, 2016, the virus still remains a severe public health threat. Laboratory experiments thus far supported the suspicions that ZIKV is a teratogenic agent. Evidence indicated that ZIKV infection cripples the host cells' innate immune responses, allowing productive replication and potential dissemination of the virus. In addition, studies suggest potential transplacental passage of the virus and subsequent selective targeting of neural progenitor cells (NPCs). Depletion of NPCs by ZIKV is associated with restricted brain …


Deletion Of Mgr2p Affects The Gating Behavior Of The Tim23 Complex, Oygul Mirzalieva, Shinhye Jeon, Kevin Damri, Ruth Hartke, Layla Drwesh, Keren Demishtein-Zohary, Abdussalam Azem, Cory D. Dunn, Pablo M. Peixoto Jan 2019

Deletion Of Mgr2p Affects The Gating Behavior Of The Tim23 Complex, Oygul Mirzalieva, Shinhye Jeon, Kevin Damri, Ruth Hartke, Layla Drwesh, Keren Demishtein-Zohary, Abdussalam Azem, Cory D. Dunn, Pablo M. Peixoto

Publications and Research

The TIM23 complex is a hub for translocation of preproteins into or across the mitochondrial inner membrane. This dual sorting mechanism is currently being investigated, and in yeast appears to be regulated by a recently discovered subunit, the Mgr2 protein. Deletion of Mgr2p has been found to delay protein translocation into the matrix and accumulation in the inner membrane. This result and other findings suggested that Mgr2p controls the lateral release of inner membrane proteins harboring a stop-transfer signal that follows an N-terminal amino acid signal. However, the mechanism of lateral release is unknown. Here, we used patch clamp electrophysiology …


Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo Sep 2018

Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo

Dissertations, Theses, and Capstone Projects

Apolipoprotein L-1 (APOL1) is a secreted protein that provides protection against several protozoan parasites due to its channel forming properties. Recently evolved variants, G1 and G2, increase kidney disease risk when present in two copies. In mammalian cells, overexpression of G1 and G2, but not wild-type G0, leads to swelling and eventual lysis. However, the mechanism of cell death remains elusive with multiple pathways being invoked, such as autophagic cell death mediated by a BH3 domain in APOL1, which we evaluated in this study. We hypothesized that the common trigger for these pathways is the APOL1 cation channel, which is …


Phospholipase D-Dependent Mtorc1 Activation By Glutamine, Elyssa Bernfeld Sep 2018

Phospholipase D-Dependent Mtorc1 Activation By Glutamine, Elyssa Bernfeld

Dissertations, Theses, and Capstone Projects

Glutamine, the conditionally essential amino acid and most abundant amino acid in human sera, is a key nutrient required for sustaining cell proliferation. Glutamine is essential for nucleotide, protein, and lipid synthesis, all of which are essential for cell proliferation. The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex that acts as a sensor of nutrients, relaying signals for the shift from catabolic to anabolic metabolism. While glutamine plays an important role in activating mTORC1, the mechanism is not completely clear. Here we describe a Rag-independent mechanism of mTORC1 activation by glutamine that is dependent …


Mechanisms Adopted By Dengue-2 Viruses To Induce Autophagy In Mammalian Cells, Sounak Ghosh Roy Sep 2018

Mechanisms Adopted By Dengue-2 Viruses To Induce Autophagy In Mammalian Cells, Sounak Ghosh Roy

Dissertations, Theses, and Capstone Projects

Dengue, the most rapidly spreading flavivirus, threatens to affect almost half of the human global population. We previously showed that dengue-2 protects canine kidney cells (MDCK) from cytotoxic chemicals. We showed, independently, that cell protection, as well as viral replication and maturation, are positively regulated by PI3K-dependent autophagy. However, we had not identified the specific pathway that induces autophagy in infected cells. The current study explores the role of a specific branch of the endoplasmic reticulum (ER) stress-mediated Unfolded Protein Response (UPR), the PERK/eIF2α/ATF4 pathway in the induction of autophagy by …


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Retinal Progenitor Cells Release Extracellular Vesicles Containing Developmental Transcription Factors, Microrna And Membrane Proteins, Jing Zhou, Alberto Benito-Martin, Jason Mighty, Lynne Chang, Shima Ghoroghi, Hao Wu, Madeline Wong, Sara Guariglia, Petr Baranov, Michael Young, Rajendra Ghardbaran, Mark Emerson, Milica Tesic Mark, Henrik Molina, M. Valeria Canto-Solar, Hector Peinado Selgas, Stephen Redenti Feb 2018

Retinal Progenitor Cells Release Extracellular Vesicles Containing Developmental Transcription Factors, Microrna And Membrane Proteins, Jing Zhou, Alberto Benito-Martin, Jason Mighty, Lynne Chang, Shima Ghoroghi, Hao Wu, Madeline Wong, Sara Guariglia, Petr Baranov, Michael Young, Rajendra Ghardbaran, Mark Emerson, Milica Tesic Mark, Henrik Molina, M. Valeria Canto-Solar, Hector Peinado Selgas, Stephen Redenti

Publications and Research

A range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs). Interestingly, mRPC derived EVs contain mRNA, miRNA and proteins associated with multipotency and retinal development. Transcripts enclosed in mRPC EVs, include the transcription factors Pax6, Hes1, and Sox2, a mitotic chromosome stabilizer Ki67, and the neural intermediate filaments Nestin and GFAP. Proteomic analysis of EV content revealed retinogenic …


Mechanisms For Survival And Drug Resistance In Cancer Cells, Matthew B. Utter Feb 2018

Mechanisms For Survival And Drug Resistance In Cancer Cells, Matthew B. Utter

Dissertations, Theses, and Capstone Projects

PART I

Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking the hormone androgen from activating the androgen receptor (AR) and thus inhibit growth and proliferation of the cancer. Androgen deprivation therapy (ADT) can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study, we provide evidence that androgen-insensitive prostate cancer cells have elevated phospholipase D (PLD) activity relative to the androgen-sensitive prostate cancer cells. PLD …