Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

PDF

2019

Institution
Keyword
Publication
Publication Type

Articles 61 - 90 of 153

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow Jun 2019

Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow

FIU Electronic Theses and Dissertations

Reef ecosystems are composed of a variety of organisms, transient species of fish and invertebrates, microscopic bacteria and viruses, and structural organisms that build the living foundation, coral. Sessile cnidarians, corals and anemones, interpret dynamic environments of organisms and abiotic factors through a molecular interface. Recognition of foreign molecules occurs through innate immunity via receptors identifying conserved molecular patterns. Similarly, chemosensory receptors monitor the environment through specific ligands. Chemosensory receptors include ionotropic glutamate receptors (iGluRs), transmembrane ion channels involved in chemical sensing and neural signal transduction. Recently, an iGluR homolog was implicated in cnidarian immunological resistance to recurrent infections of …


Zinc Chloride Enhanced Chondrogenesis Is Vegf Dependent, Gilbert M. Sharp Iv Jun 2019

Zinc Chloride Enhanced Chondrogenesis Is Vegf Dependent, Gilbert M. Sharp Iv

Seton Hall University Dissertations and Theses (ETDs)

Researchers have begun investigating whether insulin mimetics such as ZnCl2 could promote bone healing in both non-diabetic and diabetic fracture healing similarly to insulin. Our research focused on understanding the mechanism by which ZnCl2 affects chondrogenesis, an important component of bone fracture healing. The increases in proteoglycan deposition and cell proliferation seen in our data may be a result of ZnCl2 induction of the IGF-1 pathway. When the VEGF pathway was inhibited in ZnCl2- or insulin-treated cells significant decreases in proteoglycan deposition occurred on day 7 and 14 (P=0.007 for ZnCl2, P=0.028 for insulin) when compared to controls. This data …


Examining Lateral Line Development Through Cxcl14 Modulation Of Cxcl12-Cxcr4 Mediated Gene Expression In Danio Rerio, Ariana Calderon-Zavala May 2019

Examining Lateral Line Development Through Cxcl14 Modulation Of Cxcl12-Cxcr4 Mediated Gene Expression In Danio Rerio, Ariana Calderon-Zavala

Lawrence University Honors Projects

The lateral line is a mechanosensory system used by fish to sense the movement of water. It is evolutionarily related to the inner-ear in humans. For both organisms, the binding of the CXCL12 (SDF-1 ligand) to the CXCR4 receptor induces conformational changes needed to activate signal transduction. This signaling results in numerous cellular responses such as cell fate, chemotaxis, and gene transcription. Interestingly, researchers have found that another signaling molecule, CXCL14, can also bind to the CXCR4 receptor with high affinity (Tanegashima et al., 2013). As a result, we hypothesize that CXCL14 modulates CXCL12-mediated chemotaxis, presumably acting as an allosteric …


Microrna Profiling And Engineering Of Cho Cell Lines Stably Expressing Difficult-To-Express Lysosomal Protein, Ifeanyi Amadi May 2019

Microrna Profiling And Engineering Of Cho Cell Lines Stably Expressing Difficult-To-Express Lysosomal Protein, Ifeanyi Amadi

KGI Theses and Dissertations

Difficult-to-express (DTE) recombinant proteins like multi-specific proteins, DTE monoclonal antibodies and lysosomal enzymes, have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells and other mammalian cells as production platforms. CHO cells are preferably used for protein production because of their innate ability to secrete human-like recombinant proteins with post-translational modification, resistance to viral infection and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, expression of DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there are growing interest in the use of microRNAs (miRNAs) …


Targeted Genome-Scale Gene Activation And Gene Editing In Human Cells To Understand Disease Models, Michael De La Cruz May 2019

Targeted Genome-Scale Gene Activation And Gene Editing In Human Cells To Understand Disease Models, Michael De La Cruz

KGI Theses and Dissertations

Since the discovery of sequence directed DNA editing reagents such as CRISPR-Cas9 RNA-guided and TALEN DNA endonucleases, there has been a snowball of advances in the life sciences due to the ability to efficiently edit and control genomes within living cells. CRISPR-Cas9 based genomic tools, which facilitate the high-throughput precise manipulation of genes, allow for unbiased functional genomic screens. We used a human CRISPR-Cas9 Synergistic Activation Mediator pooled library which utilizes an engineered protein complex for transcriptional activation of 23,430 endogenous genes to investigate the development of novel resistance mechanisms to lung cancer targeted therapy, Erlotinib. We set out to …


Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor May 2019

Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor

MSU Graduate Theses

Uncoating is a poorly understood yet required step of HIV-1 replication that is defined as the disassembly of the viral capsid structure. The goal of this project is to characterize uncoating in C20 microglial cells. These cells are a natural target of HIV-1 that are infected to establish latent viral reservoirs and HIV-associated neurological disorders. A stable C20 cell line that expresses TRIM-CypA was established to study the kinetics of uncoating with the CsA washout assay. The expression of TRIM-CypA was confirmed by western blot and the functionality of the protein was confirmed by a viral infectivity assay. Using this …


Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods May 2019

Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods

MSU Graduate Theses

Mucopolysaccharidosis type I (MPS I) is a rare, autosomal recessive disorder caused by the deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Absence of IDUA results in the accumulation of dermatan and heparin sulfate and ultimately causes multi-system dysfunction. The most severe form of MPS I is Hurlers syndrome, a rapidly progressive disorder that, if left untreated, is fatal. Current treatment options for diagnosed individuals includes hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). These treatments are able to ameliorate the majority of symptoms with the exception of the bone phenotype. This investigation aimed to further characterize the bone …


The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis May 2019

The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis

Arts & Sciences Electronic Theses and Dissertations

Mature cells can reprogram into a proliferative, progenitor-like state to repair tissue following injury and inflammation. Differentiated cells in diverse tissues can become proliferative via a dedicated, evolutionarily conserved program we termed paligenosis. We detailed how paligenosis occurs, in both gastric chief and pancreatic acinar cells, in a step-wise manner that involves: 1) autodegradation of mature cell components; 2) re-expression of progenitor genes; 3) re-entry into the cell cycle. This process is governed by mTORC1, a fundamental cellular energy sensor and regulator of protein translation. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Developing Targeted Therapy Against Pancreatic Cancer, Garima Kaushik May 2019

Developing Targeted Therapy Against Pancreatic Cancer, Garima Kaushik

Theses & Dissertations

Not available.


The Role Of Ros In The Progression And Treatment Of Castration-Resistant Prostate Cancer, Dannah R. Miller May 2019

The Role Of Ros In The Progression And Treatment Of Castration-Resistant Prostate Cancer, Dannah R. Miller

Theses & Dissertations

Prostate cancer is the second leading cause of cancer-related deaths in U.S. men, primarily due to the development of castration-resistant (CR) prostate cancer (PCa), of which there are no effective treatment options. Reactive oxygen species (ROS) plays a critical role in prostate carcinogenesis, including the progression of the CR PCa phenotype. ROS regulates both cell proliferation and apoptosis; a moderate increase in ROS can promote proliferation; however, a substantial rise in ROS levels will result in apoptosis. Oxidase p66Shc is elevated in clinical PCa cells and has been associated with a metastatic phenotype of CR PCa cells, promoting PCa cell …


Identification Of Pathways Required For The Survival Of Inversion(16) Acute Myeloid Leukemia, Yiqian Wang May 2019

Identification Of Pathways Required For The Survival Of Inversion(16) Acute Myeloid Leukemia, Yiqian Wang

Theses & Dissertations

Inversion of chromosome 16 [inv(16)] acute myeloid leukemia (AML) generates a fusion gene CBFB-MYH11. Approximately half of inv(16) AML patients eventually relapse mainly due to the existence of leukemia stem cells (LSCs). Previous work using a Cbfb-MYH11 knockin mouse model showed that the LSCs are enriched within CSF2RB- population. Another gene upregulated by Cbfb-MYH11 encodes the cytokine receptor IL1RL1. Using Cbfb-MYH11 knockin mice, we showed that LSCs exist in multiple sub-populations defined by their immunophenotype, and IL1RL1 is expressed by cell populations with high LSC activity. We also found that treatment of IL-33, the ligand for IL1RL1, promoted …


Anti-Crispr Vs. Crispr: The Evolutionary Arms Race Between Microorganisms, Rachael M. St. Jacques May 2019

Anti-Crispr Vs. Crispr: The Evolutionary Arms Race Between Microorganisms, Rachael M. St. Jacques

Masters Theses, 2010-2019

CRISPR arrays are a defense mechanism employed by bacteria against viral invaders. Cas proteins do the work in detecting, capturing, and integrating the viral DNA into the CRISPR array (Barrangou et al., 2007). Anti-CRISPR proteins are produced by phages, viruses that infect bacteria, to stop the bacterial host’s CRISPR-Cas complex from interrupting the phage life cycle (Bondy-Denomy, et al., 2015).

SEA-PHAGES is a course-based bacteriophage research network composed of 120 colleges and known at James Madison University as Viral Discovery. JMU uses the unsequenced Streptomyces griseus ATCC10137 as a host for bacteriophage discovery and propagation, and in this study we …


An Oxanthroquinone Derivative Disrupts Ras Plasma Membrane Localization And Function By Inhibition Of Acylpeptide Hydrolase And Perturbation Of Sphingomyelin Metabolism, Lingxiao Tan May 2019

An Oxanthroquinone Derivative Disrupts Ras Plasma Membrane Localization And Function By Inhibition Of Acylpeptide Hydrolase And Perturbation Of Sphingomyelin Metabolism, Lingxiao Tan

Dissertations & Theses (Open Access)

Oncogenic RAS proteins are commonly expressed in human cancer. To be functional, RAS proteins must undergo post-translational modification and localize to the plasma membrane (PM). Therefore, compounds that prevent RAS PM targeting have potential as putative RAS inhibitors. Here we examined the mechanism of action of oxanthroquinone G01 (G01), a recently described inhibitor of KRAS PM localization. We show that G01 mislocalized HRAS and KRAS from the PM with similar potency and disrupted the spatial organization of RAS proteins remaining on the PM. G01 also inhibited recycling of epidermal growth factor receptor and transferrin receptor, but did not impair internalization …


The Role Of Gene Expression Noise In Mammalian Cell Survival, Kevin Farquhar May 2019

The Role Of Gene Expression Noise In Mammalian Cell Survival, Kevin Farquhar

Dissertations & Theses (Open Access)

Drug resistance and metastasis remain obstacles to effective cancer treatment. A major challenge contributing to this problem is cellular heterogeneity. Even in the same environment, cells with identical genomes can display cell-to-cell differences in gene expression, also known as gene expression noise. Gene expression noise can vary in magnitude in a population or in fluctuation time scales, which is influenced by gene regulatory networks.

Currently, it is unclear how gene expression noise from gene regulatory networks contributes to drug survival outcomes in mammalian cells. An isogenic cell line with a noise-modulating genetic system tuned to the same mean is required. …


Cellular Localization Of Rad51d Mutant Proteins And The Application Of Art To Increase Scientific Literacy In America, Claire L. Chabot May 2019

Cellular Localization Of Rad51d Mutant Proteins And The Application Of Art To Increase Scientific Literacy In America, Claire L. Chabot

Senior Theses

Ovarian cancers are the leading cause of death from cancer of the female reproductive system. Approximately 50% of ovarian cancers have defects in the homologous recombination (HR) DNA repair pathway that is required for the repair of DNA double-stranded breaks. The status of HR genes, such as BRCA1, BRCA2, and the RAD51 family, contributes to ovarian cancer development as well as treatment decisions regarding chemotherapy, radiation, and immunotherapy. The overarching goal of this project is to identify new insights into HR that can integrate with Precision Medicine Initiatives and align with the goals of the Cancer Moonshot 2020 Program. I …


Delineation Of Events In Centripetal Migration During Drosophila Oogenesis, Travis Tait Parsons May 2019

Delineation Of Events In Centripetal Migration During Drosophila Oogenesis, Travis Tait Parsons

UNLV Theses, Dissertations, Professional Papers, and Capstones

All multicellular organisms initially start out as a single cell. This cell must use the genetic information encoded in its DNA to multiply in number and build itself into a complex multicellular organism. How this process occurs is the focus of developmental biology, a field that seeks to understand how a combination of genetic information and environmental conditions shape a cell from its beginnings as a zygote all the way to maturity. A fundamental part of this process is the ability of cells to work together in order to build complex tissues and organs. Cells achieve this coordination by using …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy May 2019

The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy

Dissertations, Theses, and Capstone Projects

Cellular homeostasis is achieved by the dynamic flux in gene expression. Post-transcriptional regulation of coding and non-coding RNA offers a fast method of adapting to a changing cellular environment, including deadenylation, microRNA (miRNA) pathway, and alternative polyadenylation (APA). In this dissertation, I explored some of the mechanisms involved in the post-transcriptional regulation of gene expression. The main hypothesis in these studies is that a single APA event after DNA damage is governed by specific conditions and factors outside of current known regulators of APA, and that the resultant transcript has a role in the DNA damage response (DDR). My aims …


Spatial Reorganization Of Histone-Like Nucleoid Structuring Proteins Caused By Silver Nanoparticles, Meaad Alqahtany May 2019

Spatial Reorganization Of Histone-Like Nucleoid Structuring Proteins Caused By Silver Nanoparticles, Meaad Alqahtany

Graduate Theses and Dissertations

Silver nanoparticles (AgNPs) and ions (Ag+) can be the new generation of antibiotics due to their antimicrobial effects against bacteria and other microbes. Many studies have shown that AgNPs and suppress the growth of bacteria and damage the cell walls of the microbes; therefore, treating bacterial cells with AgNPs may be a promising method to terminate multi-resistant bacteria. In this work, the effect of AgNPs with two different surface coatings on the spatial reorganization of histone-like nucleoid structuring (H-NS) proteins in Escherichia coli bacteria was investigated using quantitative super-resolution fluorescence microscopy to understand the toxicity and antimicrobial mechanism of AgNPs. …


Hormone Signaling, Gene Expression, And Mitochondrial Hormone Receptor Expression In Avian Muscle (Cells), Kentu Rushadd Lassiter May 2019

Hormone Signaling, Gene Expression, And Mitochondrial Hormone Receptor Expression In Avian Muscle (Cells), Kentu Rushadd Lassiter

Graduate Theses and Dissertations

Mitochondria are vital to the proper growth and function of muscle cells since they’re responsible for the majority of ATP production used for cellular energy. Previous studies have investigated how differences in mitochondrial function affects feed efficiency (FE) in broilers phenotyped for High and Low FE. Low FE broilers have been shown to have increased levels of reactive oxygen species (ROS), thus contributing to higher levels of oxidative stress and damage seen in these birds. Global gene and protein expression studies conducted on breast muscle of the High FE and Low FE phenotypes have suggested that differences in mitochondrial function …


Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu May 2019

Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu

Graduate Theses and Dissertations

Ipomoeassin F is a flagship congener of a resin glycoside family that inhibits growth of many tumor cell lines with only single-digital nanomolar IC50 values. However, biological and pharmacological mechanisms of ipomoeassin F have been undefined. To facilitate exploration of the biological and pharmacological properties, we performed sophisticate SAR (Structure–activity relationship) studies of ipomoeassin F to understand its pharmacophore and structure properties so that we can design favorable probes for further biological investigation. By applying appropriate deviates that possess fluorescent groups and similar bio-activity, the target protein was found to be localized in endoplasmic reticulum (ER). Through biotin affinity pull …


The Effects Of Eicosapentaenoic Acid (Epa) And Docosahexaenoic Acid (Dha) On Brown Adipogenesis In Stem Cell Culture, Darynne Dahlem May 2019

The Effects Of Eicosapentaenoic Acid (Epa) And Docosahexaenoic Acid (Dha) On Brown Adipogenesis In Stem Cell Culture, Darynne Dahlem

Animal Science Undergraduate Honors Theses

Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are major maternal dietary supplements due to their positive benefits on neurological tissue growth during the first 12 weeks of gestation. Previous studies show that EPA and DHA inhibit muscle formation but promote adipogenesis. However, no research has addressed the question whether high intake of EPA and DHA affects brown fat development during gestation. The objective of this study was to measure the effect of EPA and DHA supplement on brown adipogenesis and potential pathways related to mitochondrial biosynthesis using fibroblasts as in vitro model. Using Oil-Red-O staining …


Paraoxonase 2 Is Critical For Non-Small Cell Lung Carcinoma Proliferation., Aaron Whitt May 2019

Paraoxonase 2 Is Critical For Non-Small Cell Lung Carcinoma Proliferation., Aaron Whitt

Electronic Theses and Dissertations

Non-small cell lung carcinoma (NSCLC) comprises 85% of lung cancer diagnoses and is plagued by drug resistance. Thus, elucidating the underlying mechanisms of NSCLC is paramount to expand future treatment options. Paraoxonase 2 (PON2), an intracellular enzyme with arylesterase and lactonase functions, has well-established anti-atherosclerotic activity. Recent studies show PON2 is overexpressed in a variety of tumors and confers drug resistance, although these interactions have not been thoroughly examined in NSCLC. Thus, we sought to investigate the role of PON2 in cellular proliferation using PON2-knockout mice, primary mouse cells, and NSCLC cell lines. Using these approaches, we demonstrate that PON2 …


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

Dissertations & Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific …


Gamete Nuclear Migration In Animals And Plants, Umma Fatema, Mohammad F. Ali, Zheng Hu, Anthony J. Clark, Tomokazu Kawashima Apr 2019

Gamete Nuclear Migration In Animals And Plants, Umma Fatema, Mohammad F. Ali, Zheng Hu, Anthony J. Clark, Tomokazu Kawashima

Plant and Soil Sciences Faculty Publications

The migration of male and female gamete nuclei to each other in the fertilized egg is a prerequisite for the blending of genetic materials and the initiation of the next generation. Interestingly, many differences have been found in the mechanism of gamete nuclear movement among animals and plants. Female to male gamete nuclear movement in animals and brown algae relies on microtubules. By contrast, in flowering plants, the male gamete nucleus is carried to the female gamete nucleus by the filamentous actin cytoskeleton. As techniques have developed from light, electron, fluorescence, immunofluorescence, and confocal microscopy to live-cell time-lapse imaging using …


Semisynthetic Aurones Inhibit Tubulin Polymerization At The Colchicine-Binding Site And Repress Pc-3 Tumor Xenografts In Nude Mice And Myc-Induced T-All In Zebrafish, Yanqi Xie, Liliia M. Kril, Tianxin Yu, Wen Zhang, Mykhaylo S. Frasinyuk, Svitlana P. Bondarenko, Kostyantyn M. Kondratyuk, Elizabeth Hausman, Zachary M. Martin, Przemyslaw P. Wyrebek, Xifu Liu, Agripina G. Deaciuc, Linda P. Dwoskin, Jing Chen, Haining Zhu, Chang-Guo Zhan, Vitaliy M. Sviripa, Jessica S. Blackburn, David S. Watt, Chunming Liu Apr 2019

Semisynthetic Aurones Inhibit Tubulin Polymerization At The Colchicine-Binding Site And Repress Pc-3 Tumor Xenografts In Nude Mice And Myc-Induced T-All In Zebrafish, Yanqi Xie, Liliia M. Kril, Tianxin Yu, Wen Zhang, Mykhaylo S. Frasinyuk, Svitlana P. Bondarenko, Kostyantyn M. Kondratyuk, Elizabeth Hausman, Zachary M. Martin, Przemyslaw P. Wyrebek, Xifu Liu, Agripina G. Deaciuc, Linda P. Dwoskin, Jing Chen, Haining Zhu, Chang-Guo Zhan, Vitaliy M. Sviripa, Jessica S. Blackburn, David S. Watt, Chunming Liu

Molecular and Cellular Biochemistry Faculty Publications

Structure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the leading, biologically active analogs were (Z)-2-((2-((1-ethyl-5-methoxy-1H-indol-3-yl)methylene)-3-oxo-2,3-dihydrobenzofuran-6-yl)oxy)acetonitrile (5a) and (Z)-6-((2,6-dichlorobenzyl)oxy)-2-(pyridin-4-ylmethylene)benzofuran-3(2H)-one (5b) that inhibited in vitro PC-3 prostate cancer cell proliferation with IC50 values below 100 nM. A xenograft study in nude mice using …


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a …


Novel Insights Into The Multifaceted Roles Of Blm In The Maintenance Of Genome Stability, Vivek M. Shastri Apr 2019

Novel Insights Into The Multifaceted Roles Of Blm In The Maintenance Of Genome Stability, Vivek M. Shastri

USF Tampa Graduate Theses and Dissertations

Genomic instability is a hallmark of disorders in which DNA replication and repair genes are dysfunctional. The tumor suppressor RECQ helicase gene BLM encodes the 3’-5’ DNA Bloom syndrome helicase BLM, which plays important roles during DNA replication, recombination and repair to maintain genome stability. Mutations within BLM cause Bloom syndrome, an autosomal recessive disorder characterized by growth defects, immunodeficiency, >10-fold higher sister chromatid exchange compared to normal cells, and an increased predisposition to a wide range of cancers from an early age. Single nucleotide polymorphisms or SNPs in BLM have been reported to be associated with susceptibility to a …