Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 121 - 135 of 135

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Design And Fabrication Of Nanofluidic Systems For Biomolecule Characterizations, Orain Ansel Hibbert Dec 2011

Design And Fabrication Of Nanofluidic Systems For Biomolecule Characterizations, Orain Ansel Hibbert

Graduate Theses and Dissertations

Nanofluidic channel systems were designed and fabricated by combining MEMS microfabrication with AFM nanolithography. In the fabrication process flow, photolithography was first utilized to pattern microfluidic channels and reservoirs on a 4" Pyrex substrate. Subsequently, atomic force microscopy (AFM) based nanolithography was used to mechanically fabricate nanochannels to connect the microreservoirs which formed the inlet and outlet of the nanofluidic system. A Tap190 Diamond-Like Carbon (DLC) AFM tip with a force constant of 48 N/m and a radius of less than 15 nm was used as the nanolithography tool. The resultant nanochannel ranges from 20 to 80 µm in length …


Impact Of Collateral Enlargement On Smooth Muscle Phenotype, Alexander Jerome Bynum Dec 2011

Impact Of Collateral Enlargement On Smooth Muscle Phenotype, Alexander Jerome Bynum

Master's Theses

Peripheral Artery Disease is a very serious disease characterized by an arterial occlusion due to atherosclerotic plaques. In response to an arterial occlusion, arteriogenesis occurs, causing smooth muscle cells to transition from a contractile to synthetic state. Also following an arterial occlusion, functional impairment was seen in the collateral circuit. An immunofluorescence protocol was developed in order to assess the impact of collateral enlargement (arteriogenesis) on smooth muscle phenotype at various time points. Smooth muscle α-actin was used to mark all smooth muscle cells, Ki-67 was used to label proliferating smooth muscle cells, and a fluorescent nuclear stain was used …


Effect Of Prostaglandin E2 On Mechanical Stresses Applied By Mc3t3-E1 Osteoblast-Like Cells On A Soft Hydrogel Substrate, Abhijit Deb Roy Aug 2011

Effect Of Prostaglandin E2 On Mechanical Stresses Applied By Mc3t3-E1 Osteoblast-Like Cells On A Soft Hydrogel Substrate, Abhijit Deb Roy

Master's Theses

Osteoblasts are sensitive to mechanical stimuli and release Prostaglandin E2 (PGE2) when exposed to a fluid shear stress. The exact mechanism by which these cells sense mechanical stress is not well established. A study of the stresses applied by the osteoblasts, under the influence of PGE2, on a hydrogel provided information regarding intercellular-communication via changes in the substrate surface pattern.

A digital image correlation program was developed using the Levenberg-Marquardt optimization algorithm to analyze images and compare the deformations between pairs of images. Comparisons of images before and after the addition of PE2 to the media showed differences in the …


Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride Jun 2011

Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride

Materials Engineering

Herein is described the procedure of two amphiphilic polymer wrapping techniques that may be employed for obtaining aqueous soluble quantum dots (QDs) for use in biological fluorescent imaging applications. The advent of QDs has led to new nanoscale fluorescent materials that exhibit unparalleled quantum yields (QYs), high resistance to photobleaching, tunable emissions, and
absorption over a large optical range. However, the QD synthesis employed here at Cal Poly to obtain bright, photostable CdSe(ZnS) core(shell) QDs involves the use of organic solvents and surfactants, leading to hydrophobic QDs. Since all of biology relies on aqueous solubility, this hydrophobicity creates a major …


A Microfluidic Device For Impedance Spectroscopy, Ahmet Can Sabuncu Jan 2011

A Microfluidic Device For Impedance Spectroscopy, Ahmet Can Sabuncu

Mechanical & Aerospace Engineering Theses & Dissertations

Recently, microfluidics has become a versatile tool to investigate cellular biology and to build novel biomedical devices. Dielectric spectroscopy, on the other hand, allows non-invasive probing of biological cells. Information on the cell membrane, cytoplasm, and nucleus can be obtained by dielectric spectroscopy provided that appropriate tools are used in specific frequency ranges. This dissertation includes fabrication, characterization, and testing of a simple microfluidic device to measure cell dielectric properties. The dielectric measurements are performed on human T-cell leukemia (Jurkat), mouse melanoma (B16), mouse hepatoma (Hepa), and human costal chondrocyte cells. Dielectric measurements consist of measuring the complex impedance of …


A Synthetic Biological Engineering Approach To Secretion- Based Recovery Of Polyhydroxyalkanoates And Other Cellular Products, Elisabeth Linton May 2010

A Synthetic Biological Engineering Approach To Secretion- Based Recovery Of Polyhydroxyalkanoates And Other Cellular Products, Elisabeth Linton

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The costs associated with cellular product recovery commonly account for as much as 80% of the total production expense. As a specific example, significant recovery costs limit commercial use of polyhydroxyalkanoates (PHA), which comprise a class of microbially-accumulated polyesters. PHAs are biodegradable compounds that are of interest as a sustainable alternative to petrochemically-derived plastics. Secretion-based recovery of PHAs was studied to decrease PHA production costs. Type I and II secretory pathways are commonly used for the translocation of recombinant proteins out of the cytoplasm of E. coli. Proteins were targeted for translocation using four signal peptides (HlyA, TorA, GeneIII, …


Micro, Nano Encapsulation Methods For Sustained Release Drug Formulations And Biomimetic Applications, Shantanu Balkundi Jul 2009

Micro, Nano Encapsulation Methods For Sustained Release Drug Formulations And Biomimetic Applications, Shantanu Balkundi

Doctoral Dissertations

The Layer-by-Layer (LbL) assembly technique was used to obtain a new type of protein/polyphenol microcapsule based on naturally occurring polyphenol (-)-epigallocatechin gallate (EGCG) and gelatin, type A. The dependence of permeability on the molecular weight of permeating substances was studied and compared with commonly used polyallylamine/polystyrene sulfonate capsules. A quartz crystal microbalance was used to monitor the regularities of EGCG adsorption in alternation with type A and B Gelatins and electrophoretic mobility measurements were used that indicated that the nature of assembly was dependent on Gelatin properties. It was shown that EGCG retains its antioxidant activity in the LbL assemblies. …


Prostate Cancer Biomarker Identification: A Comparative Study, Wenjuan Jiang Jul 2009

Prostate Cancer Biomarker Identification: A Comparative Study, Wenjuan Jiang

Computational Modeling & Simulation Engineering Theses & Dissertations

With the current development of proteomics techniques, the discovery of potential molecular biomarkers for early detection of prostate cancer has been greatly improved. In this thesis, we implemented five classifiers including the support vector machine (SVM), Bayesian Classifier, Decision Tree, Random Forest and the Multilayer perceptron (MLP) to test their effectiveness in prostate cancer biomarker identification using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue imaging data. The classifiers were utilized to discriminate cancer mass spectra from normal ones for the data collected at the Eastern Virginia Medical School (EVMS). There are 94 7 spectra from normal tissues and 27 from …


Generation Of Recombinant Mouse Embryonic Stem Cell Lines And Theirapplication For In Vivo Bioluminiscence Imaging In The Heart, Ramana Kammili Jan 2008

Generation Of Recombinant Mouse Embryonic Stem Cell Lines And Theirapplication For In Vivo Bioluminiscence Imaging In The Heart, Ramana Kammili

Electronic Theses and Dissertations

Cardiovascular disease is the major cause of death in the United States, with 80 million people suffering from some form of heart disease each year. One major limitation is the inability of the heart to repair the damaged tissue. Stem cell therapy holds enormous promise to repair and regenerate the damaged myocardium, but there are many technical difficulties that must first be overcome. One such difficulty is the present lack of ability to track and assess transplanted stem cells over time in vivo. The central hypothesis of this thesis is that in vivo bioluminescence imaging is a safe and useful …


A Versatile Imaging System For In Vivo Small Animal Research, Jianguo Qian Jan 2008

A Versatile Imaging System For In Vivo Small Animal Research, Jianguo Qian

Dissertations, Theses, and Masters Projects

In vivo small animal imaging has become an essential technique for molecular biology studies. However, requirements of spatial resolution, sensitivity and image quality are quite challenging for the development of small-animal imaging systems. The capabilities of the system are also significant for carrying out small animal imaging in a wide range of biological studies. The goal of this dissertation is to develop a high-performance imaging system that can readily meet a wide range of requirements for a variety of small animal imaging applications. Several achievements have been made in order to fulfill this goal.;To supplement our system for parallel-hole single …


Gene Synthesis, Cloning, Expression, Purification And Biophysical Characterization Of The C2 Domain Of Human Tensin, Kiran Sukumar Gajula Oct 2007

Gene Synthesis, Cloning, Expression, Purification And Biophysical Characterization Of The C2 Domain Of Human Tensin, Kiran Sukumar Gajula

Doctoral Dissertations

Tensin is a large "docking" protein found in the adhesive junctions of animal cells and recruited early in the development of cell-substrate contacts. There it binds to the cytoplasmic domain of integrin β1 and caps the barbed ends of filamentous actin. This forms a rational basis for its implication in a direct role in the mechanics of membrane-cytoskeleton interactions. Tensin provides a physical link between the actin cytoskeleton, integrins, and other proteins at the cell-substrate contacts. Its overall biochemical properties are a function of its domain composition and architecture, i.e., the domains that are present and their relative positions in …


Molecular Modeling Of Proteins And Peptides Related To Cell Attachment In Vivo And In Vitro, Wanhua Zhao Jul 2006

Molecular Modeling Of Proteins And Peptides Related To Cell Attachment In Vivo And In Vitro, Wanhua Zhao

Doctoral Dissertations

Polypeptides constitute half of the dry mass of the cell, they form the bulk of the extracellular matrix (ECM), and they are a common element of extra- and intracellular signaling pathways. There is increasing interest in the development of computational methods in polypeptide and protein engineering on all length scales. This research concerns the development of computational methods for study of polypeptide interactions related to cell attachment in vivo and in vitro.

Polypeptides are inherently biocompatible, and an astronomical range of unique sequences can be designed and realized in massive quantities by modern methods of synthesis and purification. These …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Structural Characterization Of Fucoidan And Its Role In The Hemizona Assay, Manish S. Patankar Oct 1992

Structural Characterization Of Fucoidan And Its Role In The Hemizona Assay, Manish S. Patankar

Chemistry & Biochemistry Theses & Dissertations

Fucoidan is a polysaccharide commonly found in brown algae. It is a sulfated polymer of the monosaccharide L-fucose. Fucoidan is thought to function in water retention by algae. Commercially available fucoidan is extracted from a brown algae called Eurus vesiculosus.

This polysaccharide has immense potential as a biologically active agent: (i) it exhibits anticoagulant action, (ii) it has also been reported to block retroviral replication and (iii) it is capable of blocking sperm-egg binding in sea urchin, mouse and rabbit. Recently, fucoidan has also been shown to block the interaction of human sperm and egg in the hemizona assay …


Metabolism Of Arachidonate-Containing Phospholipid Molecular Species In The Murine Macrophage-Like Cell Line, P388d1, Crystal R. Waites May 1991

Metabolism Of Arachidonate-Containing Phospholipid Molecular Species In The Murine Macrophage-Like Cell Line, P388d1, Crystal R. Waites

Electronic Theses and Dissertations

Glycerophospholipids of mammalian cells exist as chemically diverse structures with various fatty acids at the sn-1 and sn-2 positions. Arachidonic acid, a polyunsaturated fatty acid, which may be converted to biologically active eicosanoids such as prostaglandins, thromboxanes, and leukotrienes, is found predominantly in the sn-2 position of glycerophospholipids. The purpose of this study was to examine, at the level of the individual molecular species, the incorporation of arachidonate into phospholipids and its release from phospholipids during stimulation. In this way, the specificity of the enzymes controlling arachidonate metabolism could be examined in order to clarify the processes that control the …