Open Access. Powered by Scholars. Published by Universities.®

Aquaculture and Fisheries Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Old Dominion University

CCPO Publications

Perkinsus marinus

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Aquaculture and Fisheries

Understanding The Success And Failure Of Oyster Populations: The Importance Of Sampled Variables And Sample Timing, Thomas M. Soniat, Eric N. Powell, Eileen E. Hofmann, John M. Klinck Jan 1998

Understanding The Success And Failure Of Oyster Populations: The Importance Of Sampled Variables And Sample Timing, Thomas M. Soniat, Eric N. Powell, Eileen E. Hofmann, John M. Klinck

CCPO Publications

One of the primary obstacles to understanding why some oyster populations are successful and others are not is the complex interaction of environmental variables with oyster physiology and with such population variables as the rates of recruitment and juvenile mortality. A numerical model is useful in investigating how population structure originates out of this complexity. We have monitored a suite of environmental conditions over an environmental gradient to document the importance of short time-scale variations in such variables as food supply, turbidity, and salinity. Then, using a coupled oyster disease population dynamics model, we examine the need for short rime-scale …


Modeling Oyster Populations Ii. Adult Size And Reproductive Effort, E. E. Hofmann, J. M. Klinck, E. N. Powell, S. Boyles, M. Ellis Jan 1994

Modeling Oyster Populations Ii. Adult Size And Reproductive Effort, E. E. Hofmann, J. M. Klinck, E. N. Powell, S. Boyles, M. Ellis

CCPO Publications

A time-dependent model of energy flow in post-settlement oyster populations is used to examine the factors that influence adult size and reproductive effort in a particular habitat, Galveston Bay, Texas, and in habitats that extend from Laguna Madre, Texas to Chesapeake Bay. The simulated populations show that adult size and reproductive effort are determined by the allocation of net production to somatic or reproductive tissue development and the rate of food acquisition, both of which are temperature dependent. For similar food conditions, increased temperature reduces the allocation of net production to somatic tissue and increases the rate of food acquisition. …