Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Biochemistry, Biophysics, and Structural Biology

Institution
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 246

Full-Text Articles in Life Sciences

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou Mar 2018

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou

Urology Faculty Publications

The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our …


Structure Of Full-Length Human Trpm4, Jingjing Duan, Zongli Li, Jian Li, Ana Santa-Cruz, Silvia Sanchez-Martinez, Jin Zhang, David E. Clapham Mar 2018

Structure Of Full-Length Human Trpm4, Jingjing Duan, Zongli Li, Jian Li, Ana Santa-Cruz, Silvia Sanchez-Martinez, Jin Zhang, David E. Clapham

Molecular and Cellular Biochemistry Faculty Publications

Transient receptor potential melastatin subfamily member 4 (TRPM4) is a widely distributed, calcium-activated, monovalent-selective cation channel. Mutations in human TRPM4 (hTRPM4) result in progressive familial heart block. Here, we report the electron cryomicroscopy structure of hTRPM4 in a closed, Na+-bound, apo state at pH 7.5 to an overall resolution of 3.7 Å. Five partially hydrated sodium ions are proposed to occupy the center of the conduction pore and the entrance to the coiled-coil domain. We identify an upper gate in the selectivity filter and a lower gate at the entrance to the cytoplasmic coiled-coil domain. Intramolecular interactions exist …


Regulation Of Kv2.1 Channel Inactivation By Phosphatidylinositol 4,5-Bisphosphate., Mayra Delgado-Ramírez, José J De Jesús-Pérez, Iván A Aréchiga-Figueroa, Jorge Arreola, Scott K Adney, Carlos A. Villalba-Galea, Diomedes E Logothetis, Aldo A Rodríguez-Menchaca Jan 2018

Regulation Of Kv2.1 Channel Inactivation By Phosphatidylinositol 4,5-Bisphosphate., Mayra Delgado-Ramírez, José J De Jesús-Pérez, Iván A Aréchiga-Figueroa, Jorge Arreola, Scott K Adney, Carlos A. Villalba-Galea, Diomedes E Logothetis, Aldo A Rodríguez-Menchaca

School of Pharmacy Faculty Articles

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a membrane phospholipid that regulates the function of multiple ion channels, including some members of the voltage-gated potassium (Kv) channel superfamily. The PIP2 sensitivity of Kv channels is well established for all five members of the Kv7 family and for Kv1.2 channels; however, regulation of other Kv channels by PIP2 remains unclear. Here, we investigate the effects of PIP2 on Kv2.1 channels by applying exogenous PIP2 to the cytoplasmic face of excised membrane patches, activating muscarinic receptors (M1R), or depleting endogenous PIP2 using a rapamycin-translocated 5-phosphatase (FKBP-Inp54p). Exogenous PIP2 rescued Kv2.1 channels from rundown and partially …


Kruppel-Like Factor 4-Dependent Staufen1-Mediated Mrna Decay Regulates Cortical Neurogenesis, Byoung-San Moon, Jinlun Bai, Mingyang Cai, Chunming Liu, Jiandang Shi, Wange Lu Jan 2018

Kruppel-Like Factor 4-Dependent Staufen1-Mediated Mrna Decay Regulates Cortical Neurogenesis, Byoung-San Moon, Jinlun Bai, Mingyang Cai, Chunming Liu, Jiandang Shi, Wange Lu

Molecular and Cellular Biochemistry Faculty Publications

Kruppel-like factor 4 (Klf4) is a zinc-finger-containing protein that plays a critical role in diverse cellular physiology. While most of these functions attribute to its role as a transcription factor, it is postulated that Klf4 may play a role other than transcriptional regulation. Here we demonstrate that Klf4 loss in neural progenitor cells (NPCs) leads to increased neurogenesis and reduced self-renewal in mice. In addition, Klf4 interacts with RNA-binding protein Staufen1 (Stau1) and RNA helicase Ddx5/17. They function together as a complex to maintain NPC self-renewal. We report that Klf4 promotes Stau1 recruitment to the 3′-untranslated region of neurogenesis-associated mRNAs, …


Selective Inhibition Of Ctcf Binding By Ias Directs Tet-Mediated Reprogramming Of 5-Hydroxymethylation Patterns In Ias-Transformed Cells, Matthew Rea, Tyler Gripshover, Yvonne N. Fondufe-Mittendorf Jan 2018

Selective Inhibition Of Ctcf Binding By Ias Directs Tet-Mediated Reprogramming Of 5-Hydroxymethylation Patterns In Ias-Transformed Cells, Matthew Rea, Tyler Gripshover, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Methylation at cytosine (5mC) is a fundamental epigenetic DNA modification recently associated with iAs-mediated carcinogenesis. In contrast, the role of 5-hydroxymethylcytosine (5hmC), the oxidation product of 5mC in iAs-mediated carcinogenesis is unknown. Here we assess the hydroxymethylome in iAs-transformed cells, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks. Moreover, this pathologic iAs-mediated carcinogenesis is characterized by a shift toward a higher hydroxymethylation pattern genome-wide. At specific promoters, hydroxymethylation correlated with increased gene expression. Furthermore, this increase in hydroxymethylation occurs concurrently with an upregulation of ten-eleven translocation (TET) enzymes that oxidize 5-methylcytosine (5mC) in DNA. To …


Human Metapneumovirus Induces Formation Of Inclusion Bodies For Efficient Genome Replication And Transcription, Nicolás P. Cifuentes-Muñoz, Jean Branttie, Kerri Beth Slaughter, Rebecca Ellis Dutch Dec 2017

Human Metapneumovirus Induces Formation Of Inclusion Bodies For Efficient Genome Replication And Transcription, Nicolás P. Cifuentes-Muñoz, Jean Branttie, Kerri Beth Slaughter, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA …


Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau Nov 2017

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau

Molecular and Cellular Biochemistry Faculty Publications

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection–associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. …


Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie Oct 2017

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie

Molecular and Cellular Biochemistry Faculty Publications

Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning …


1H, 15N, And 13C Chemical Shift Assignments Of The Regulatory Domain Of Human Calcineurin, Dinesh K. Yadav, Sri Ramya Tata, John Hunt, Erik C. Cook, Trevor P. Creamer, Nicholas C. Fitzkee Oct 2017

1H, 15N, And 13C Chemical Shift Assignments Of The Regulatory Domain Of Human Calcineurin, Dinesh K. Yadav, Sri Ramya Tata, John Hunt, Erik C. Cook, Trevor P. Creamer, Nicholas C. Fitzkee

Center for Structural Biology Faculty Publications

Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the RD. In …


Transient And Permanent Changes In Dna Methylation Patterns In Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf Sep 2017

Transient And Permanent Changes In Dna Methylation Patterns In Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells …


Mutations Of Conserved Non-Coding Elements Of Pitx2 In Patients With Ocular Dysgenesis And Developmental Glaucoma., Meredith E. Protas, Eric Weh, Tim Footz, Jay Kasberger, Scott C. Baraban, Alex V. Levin, L. Jay Katz, Robert Ritch, Michael A. Walter, Elena V. Semina, Douglas B. Gould Sep 2017

Mutations Of Conserved Non-Coding Elements Of Pitx2 In Patients With Ocular Dysgenesis And Developmental Glaucoma., Meredith E. Protas, Eric Weh, Tim Footz, Jay Kasberger, Scott C. Baraban, Alex V. Levin, L. Jay Katz, Robert Ritch, Michael A. Walter, Elena V. Semina, Douglas B. Gould

Natural Sciences and Mathematics | Faculty Scholarship

Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements. We used CRISPR/Cas9 to delete the orthologous region in zebrafish in order to test the pathogenicity of …


The Activity Of The Serotonin Receptor 2c Is Regulated By Alternative Splicing, Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson Sep 2017

The Activity Of The Serotonin Receptor 2c Is Regulated By Alternative Splicing, Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson

Molecular and Cellular Biochemistry Faculty Publications

The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is …


Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi Jul 2017

Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi

Center for Environmental and Systems Biochemistry Faculty Publications

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


Mutations In The Transmembrane Domain And Cytoplasmic Tail Of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly, Nicolás P. Cifuentes-Muñoz, Weina Sun, Greeshma Ray, Phuong Tieu Schmitt, Stacy Webb, Kathleen Gibson, Rebecca Ellis Dutch, Anthony P. Schmitt Jul 2017

Mutations In The Transmembrane Domain And Cytoplasmic Tail Of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly, Nicolás P. Cifuentes-Muñoz, Weina Sun, Greeshma Ray, Phuong Tieu Schmitt, Stacy Webb, Kathleen Gibson, Rebecca Ellis Dutch, Anthony P. Schmitt

Molecular and Cellular Biochemistry Faculty Publications

Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking …


C/D-Box Snornas Form Methylating And Non-Methylating Ribonucleoprotein Complexes: Old Dogs Show New Tricks, Marina Falaleeva, Justin R. Welden, Marilyn J. Duncan, Stefan Stamm Jun 2017

C/D-Box Snornas Form Methylating And Non-Methylating Ribonucleoprotein Complexes: Old Dogs Show New Tricks, Marina Falaleeva, Justin R. Welden, Marilyn J. Duncan, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non‐coding RNAs that have been long known to perform 2′‐O‐methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader‐Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre‐mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD …


Perspectives And Expectations In Structural Bioinformatics Of Metalloproteins, Sen Yao, Robert M. Flight, Eric C. Rouchka, Hunter N. B. Moseley May 2017

Perspectives And Expectations In Structural Bioinformatics Of Metalloproteins, Sen Yao, Robert M. Flight, Eric C. Rouchka, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Recent papers highlight the presence of large numbers of compressed angles in metal ion coordination geometries for metalloprotein entries in the worldwide Protein Data Bank, due mainly to multidentate coordination. The prevalence of these compressed angles has raised the controversial idea that significantly populated aberrant or even novel coordination geometries may exist. Some of these papers have undergone severe criticism, apparently due to views held that only canonical coordination geometries exist in significant numbers. While criticism of controversial ideas is warranted and to be expected, we believe that a line was crossed where unfair criticism was put forth to discredit …


Another Look At Pyrroloiminoquinone Alkaloids-Perspectives On Their Therapeutic Potential From Known Structures And Semisynthetic Analogues., Sheng Lin, Erin P. Mccauley, Nicholas Lorig-Roach, Karen Tenney, Cassandra N. Naphen, Ai-Mei Yang, Tyler A. Johnson, Thalia Hernadez, Ramandeep Rattan, Frederick A. Valeriote, Phillip Crews Mar 2017

Another Look At Pyrroloiminoquinone Alkaloids-Perspectives On Their Therapeutic Potential From Known Structures And Semisynthetic Analogues., Sheng Lin, Erin P. Mccauley, Nicholas Lorig-Roach, Karen Tenney, Cassandra N. Naphen, Ai-Mei Yang, Tyler A. Johnson, Thalia Hernadez, Ramandeep Rattan, Frederick A. Valeriote, Phillip Crews

Natural Sciences and Mathematics | Faculty Scholarship

This study began with the goal of identifying constituents from Zyzzya fuliginosa extracts that showed selectivity in our primary cytotoxicity screen against the PANC-1 tumor cell line. During the course of this project, which focused on six Z. fuliginosa samples collected from various regions of the Indo-Pacific, known compounds were obtained consisting of nine makaluvamine and three damirone analogues. Four new acetylated derivatives were also prepared. High-accuracy electrospray ionization mass spectrometry (HAESI-MS) m/z ions produced through MS2 runs were obtained and interpreted to provide a rapid way for dereplicating isomers containing a pyrrolo[4,3,2-de]quinoline core. In vitro human pancreas/duct epithelioid …


Discovery And Validation Of Information Theory-Based Transcription Factor And Cofactor Binding Site Motifs., Ruipeng Lu, Eliseos J Mucaki, Peter K Rogan Mar 2017

Discovery And Validation Of Information Theory-Based Transcription Factor And Cofactor Binding Site Motifs., Ruipeng Lu, Eliseos J Mucaki, Peter K Rogan

Biochemistry Publications

Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, …


Editorial: Platelet Secretion, Brian Storrie, Sidney W. Whiteheart Mar 2017

Editorial: Platelet Secretion, Brian Storrie, Sidney W. Whiteheart

Molecular and Cellular Biochemistry Faculty Publications

No abstract provided.


Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault Feb 2017

Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can …


A Cationic Amphiphilic Random Copolymer With Ph-Responsive Activity Against Methicillin-Resistant Staphylococcus Aureus., Sungyoup Hong, Haruko Takahashi, Enrico T Nadres, Hamid Mortazavian, Gregory Caputo, John G Younger, Kenichi Kuroda Jan 2017

A Cationic Amphiphilic Random Copolymer With Ph-Responsive Activity Against Methicillin-Resistant Staphylococcus Aureus., Sungyoup Hong, Haruko Takahashi, Enrico T Nadres, Hamid Mortazavian, Gregory Caputo, John G Younger, Kenichi Kuroda

Faculty Scholarship for the College of Science & Mathematics

In this report, we demonstrate the pH-dependent, in vitro antimicrobial activity of a cationic, amphiphilic random copolymer against clinical isolates of drug-resistant Staphylococcus aureus. The polymer was developed toward a long-term goal of potential utility in the treatment of skin infections. The proposed mechanism of action of the polymer is through selectively binding to bacterial membranes and subsequent disruption of the membrane structure/integrity, ultimately resulting in bacterial cell death. The polymer showed bactericidal activity against clinical isolates of methicillin-resistant or vancomycin-intermediate S. aureus. The polymer was effective in killing S. aureus at neutral pH, but inactive under acidic conditions (pH …


Oxidative Stress And Inflammation In Hepatic Diseases: Current And Future Therapy., Karina Reyes-Gordillo, Ruchi Shah, Pablo Muriel Jan 2017

Oxidative Stress And Inflammation In Hepatic Diseases: Current And Future Therapy., Karina Reyes-Gordillo, Ruchi Shah, Pablo Muriel

Biochemistry and Molecular Medicine Faculty Publications

Liver disease is a highly prevalent disease that is one of the leading causes of death worldwide. The continuous exposure of the liver to some factors such as viruses, alcohol, fat, and biotransformed metabolites can cause hepatic injury, which can lead to inflammation and liver degeneration. When the injury is sustained for long time, it can cause chronic liver diseases (CLDs), which include a spectrum of disease states ranging from simple steatosis and steatohepatitis (steatosis with inflammation and hepatocyte injury and death) to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Multiple evidences indicate that oxidative stress and inflammation are the most …


Sex Differences In The Subjective Effects Of Oral Δ9-Thc In Cannabis Users, Jessica S. Fogel, Thomas H. Kelly, Philip M. Westgate, Joshua A. Lile Jan 2017

Sex Differences In The Subjective Effects Of Oral Δ9-Thc In Cannabis Users, Jessica S. Fogel, Thomas H. Kelly, Philip M. Westgate, Joshua A. Lile

Behavioral Science Faculty Publications

Previous studies suggest that there are sex differences in endocannabinoid function and the response to exogenous cannabinoids, though data from clinical studies comparing acute cannabinoid effects in men and women under controlled laboratory conditions are limited. To further explore these potential differences, data from 30 cannabis users (N=18 M, 12 F) who completed previous Δ9-tetrahydrocannabinol (Δ9-THC) discrimination studies were combined for this retrospective analysis. In each study, subjects learned to discriminate between oral Δ9-THC and placebo and then received a range of Δ9-THC doses (0, 5, 15 and a “high” dose of …


The Nuts And Bolts Of The Platelet Release Reaction, Smita Joshi, Sidney W. Whiteheart Nov 2016

The Nuts And Bolts Of The Platelet Release Reaction, Smita Joshi, Sidney W. Whiteheart

Molecular and Cellular Biochemistry Faculty Publications

Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE regulators, which control when, where, and how the SNAREs interact, have been identified in platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., phosphorylation and acylation. Although there have been many …


P70s6k1 (S6k1)-Mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I Γ Degradation And Cell Invasion, Naser Jafari, Qiaodan Zheng, Liqing Li, Wei Li, Lei Qi, Jianyong Xiao, Tianyan Gao, Cai Huang Oct 2016

P70s6k1 (S6k1)-Mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I Γ Degradation And Cell Invasion, Naser Jafari, Qiaodan Zheng, Liqing Li, Wei Li, Lei Qi, Jianyong Xiao, Tianyan Gao, Cai Huang

Markey Cancer Center Faculty Publications

Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 …


Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao Oct 2016

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao

Markey Cancer Center Faculty Publications

The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell cultures …


Hemi-Methylated Dna Regulates Dna Methylation Inheritance Through Allosteric Activation Of H3 Ubiquitylation By Uhrf1, Joseph S. Harrison, Evan M. Cornett, Dennis Goldfarb, Paul A. Darosa, Zimeng M. Li, Feng Yan, Bradley M. Dickson, Angela H. Guo, Daniel V. Cantu, Lilia Kaustov, Peter J. Brown, Cheryl H. Arrowsmith, Dorothy A. Erie, Michael B. Major, Rachel E. Klevit, Krzysztof Krajewski, Brian Kuhlman, Brian D. Strahl, Scott B. Rothbart Sep 2016

Hemi-Methylated Dna Regulates Dna Methylation Inheritance Through Allosteric Activation Of H3 Ubiquitylation By Uhrf1, Joseph S. Harrison, Evan M. Cornett, Dennis Goldfarb, Paul A. Darosa, Zimeng M. Li, Feng Yan, Bradley M. Dickson, Angela H. Guo, Daniel V. Cantu, Lilia Kaustov, Peter J. Brown, Cheryl H. Arrowsmith, Dorothy A. Erie, Michael B. Major, Rachel E. Klevit, Krzysztof Krajewski, Brian Kuhlman, Brian D. Strahl, Scott B. Rothbart

College of the Pacific Faculty Articles

The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the …


Lipophosphoglycans From Leishmania Amazonensis Strains Display Immunomodulatory Properties Via Tlr4 And Do Not Affect Sand Fly Infection, Paula M. Nogueira, Rafael R. Assis, Ana C. Torrecilhas, Elvira M. Saraiva, Natália L. Pessoa, Marco A. Campos, Eric F. Marialva, Cláudia M. Ríos-Velasquez, Felipe A. Pessoa, Nágila F. Secundino, Jerônimo N. Rugani, Elsa Nieves, Salvatore J. Turco, Maria N. Melo, Rodrigo P. Soares Aug 2016

Lipophosphoglycans From Leishmania Amazonensis Strains Display Immunomodulatory Properties Via Tlr4 And Do Not Affect Sand Fly Infection, Paula M. Nogueira, Rafael R. Assis, Ana C. Torrecilhas, Elvira M. Saraiva, Natália L. Pessoa, Marco A. Campos, Eric F. Marialva, Cláudia M. Ríos-Velasquez, Felipe A. Pessoa, Nágila F. Secundino, Jerônimo N. Rugani, Elsa Nieves, Salvatore J. Turco, Maria N. Melo, Rodrigo P. Soares

Molecular and Cellular Biochemistry Faculty Publications

The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of …