Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Life Sciences

The Gating Charge Should Not Be Estimated By Fitting A Two-State Model To A Q-V Curve, Francisco Bezanilla, Carlos A. Villalba-Galea Dec 2013

The Gating Charge Should Not Be Estimated By Fitting A Two-State Model To A Q-V Curve, Francisco Bezanilla, Carlos A. Villalba-Galea

School of Pharmacy Faculty Articles

The voltage dependence of charges in voltage-sensitive proteins, typically displayed as charge versus voltage (Q-V) curves, is often quantified by fitting it to a simple two-state Boltzmann function. This procedure overlooks the fact that the fitted parameters, including the total charge, may be incorrect if the charge is moving in multiple steps. We present here the derivation of a general formulation for Q-V curves from multistate sequential models, including the case of infinite number of states. We demonstrate that the commonly used method to estimate the charge per molecule using a simple Boltzmann fit is not only inadequate, but in …


Sensing Charges Of The Ciona Intestinalis Voltage-Sensing Phosphatase, Carlos A. Villalba-Galea, Ludivine Frezza, Walter Sandtner, Francisco Bezanilla Nov 2013

Sensing Charges Of The Ciona Intestinalis Voltage-Sensing Phosphatase, Carlos A. Villalba-Galea, Ludivine Frezza, Walter Sandtner, Francisco Bezanilla

School of Pharmacy Faculty Articles

Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to …


Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari Oct 2013

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari

Dartmouth Scholarship

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killer FLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using …


An Expanded View Of The Eukaryotic Cytoskeleton, James B. Moseley Oct 2013

An Expanded View Of The Eukaryotic Cytoskeleton, James B. Moseley

Dartmouth Scholarship

A rich and ongoing history of cell biology research has defined the major polymer systems of the eukaryotic cytoskeleton. Recent studies have identified additional proteins that form filamentous structures in cells and can self-assemble into linear polymers when purified. This suggests that the eukaryotic cytoskeleton is an even more complex system than previously considered. In this essay, I examine the case for an expanded definition of the eukaryotic cytoskeleton and present a series of challenges for future work in this area.


Pathoscope: Species Identification And Strain Attribution With Unassembled Sequencing Data., Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje, Mark J Clement, Keith A Crandall, W Evan Johnson Oct 2013

Pathoscope: Species Identification And Strain Attribution With Unassembled Sequencing Data., Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje, Mark J Clement, Keith A Crandall, W Evan Johnson

Computational Biology Institute

Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new methodology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed environmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that accommodates information on sequence …


Identification Of Cell Cycle–Regulated Genes Periodically Expressed In U2os Cells And Their Regulation By Foxm1 And E2f Transcription Factors, Gavin D. Grant, Lionel Brooks Iii, Xiaoyang Zhang, J. Matthew Mahoney, Viktor Martyanov, Tammara A. Wood, Gavin Sherlock, Chao Cheng, Michael L. Whitfield Sep 2013

Identification Of Cell Cycle–Regulated Genes Periodically Expressed In U2os Cells And Their Regulation By Foxm1 And E2f Transcription Factors, Gavin D. Grant, Lionel Brooks Iii, Xiaoyang Zhang, J. Matthew Mahoney, Viktor Martyanov, Tammara A. Wood, Gavin Sherlock, Chao Cheng, Michael L. Whitfield

Dartmouth Scholarship

We identify the cell cycle–regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle–regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle–regulated genes. FOXM1 is bound to cell cycle–regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly …


Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair Aug 2013

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair

Dartmouth Scholarship

The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, ac


Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Chemically Diverse Microtubule Stabilizing Agents Initiate Distinct Mitotic Defects And Dysregulated Expression Of Key Mitotic Kinases., Cristina C. Rohena, Jiangnan Peng, Tyler A. Johnson, Phillip Crews, Susan L. Mooberry Apr 2013

Chemically Diverse Microtubule Stabilizing Agents Initiate Distinct Mitotic Defects And Dysregulated Expression Of Key Mitotic Kinases., Cristina C. Rohena, Jiangnan Peng, Tyler A. Johnson, Phillip Crews, Susan L. Mooberry

Natural Sciences and Mathematics | Faculty Scholarship

Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent …


Side Chain Requirements For Affinity And Specificity In D5, An Hiv-1 Antibody Derived From The Vh1-69 Germline Segment, Alex Stewart, Joseph S. Harrison, Lauren K. Regula, Jonathan R. Lai Apr 2013

Side Chain Requirements For Affinity And Specificity In D5, An Hiv-1 Antibody Derived From The Vh1-69 Germline Segment, Alex Stewart, Joseph S. Harrison, Lauren K. Regula, Jonathan R. Lai

College of the Pacific Faculty Articles

BACKGROUND: Analysis of factors contributing to high affinity antibody-protein interactions provides insight into natural antibody evolution, and guides the design of antibodies with new or enhanced function. We previously studied the interaction between antibody D5 and its target, a designed protein based on HIV-1 gp41 known as 5-Helix, as a model system [Da Silva, G. F.; Harrison, J. S.; Lai, J. R., Biochemistry, 2010, 49, 5464-5472]. Antibody D5 represents an interesting case study because it is derived from the VH1-69 germline segment; this germline segment is characterized by a hydrophobic second heavy chain complementarity determining region (HCDR2) that constitutes the …


Fuzzy Complex Formation Between The Intrinsically Disordered Prothymosin Α And The Kelch Domain Of Keap1 Involved In The Oxidative Stress Response., Halema Khan, Elio A Cino, Anne Brickenden, Jingsong Fan, Daiwen Yang, Wing-Yiu Choy Mar 2013

Fuzzy Complex Formation Between The Intrinsically Disordered Prothymosin Α And The Kelch Domain Of Keap1 Involved In The Oxidative Stress Response., Halema Khan, Elio A Cino, Anne Brickenden, Jingsong Fan, Daiwen Yang, Wing-Yiu Choy

Biochemistry Publications

Kelch-like ECH-associated protein 1 (Keap1) is an inhibitor of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor for cytoprotective gene activation in the oxidative stress response. Under unstressed conditions, Keap1 interacts with Nrf2 in the cytoplasm via its Kelch domain and suppresses the transcriptional activity of Nrf2. During oxidative stress, Nrf2 is released from Keap1 and is translocated into the nucleus, where it interacts with the small Maf protein to initiate gene transcription. Prothymosin α (ProTα), an intrinsically disordered protein, also interacts with the Kelch domain of Keap1 and mediates the import of Keap1 into the nucleus …


Pyrvinium Pamoate Changes Alternative Splicing Of The Serotonin Receptor 2c By Influencing Its Rna Structure, Manli Shen, Stanislav Bellaousov, Michael Hiller, Pierre De La Grange, Trevor O. Creamer, Orit Malina, Ruth Sperling, David H. Mathews, Peter Stoilov, Stefan Stamm Feb 2013

Pyrvinium Pamoate Changes Alternative Splicing Of The Serotonin Receptor 2c By Influencing Its Rna Structure, Manli Shen, Stanislav Bellaousov, Michael Hiller, Pierre De La Grange, Trevor O. Creamer, Orit Malina, Ruth Sperling, David H. Mathews, Peter Stoilov, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2'-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5'-splice site forms intramolecular base pairs that …


Alginate Lyase Exhibits Catalysis-Independent Biofilm Dispersion And Antibiotic Synergy, John W. Lamppa, Karl E. Griswold Jan 2013

Alginate Lyase Exhibits Catalysis-Independent Biofilm Dispersion And Antibiotic Synergy, John W. Lamppa, Karl E. Griswold

Dartmouth Scholarship

More than 2 decades of study support the hypothesis that alginate lyases are promising therapeutic candidates for treating mucoid Pseudomonas aeruginosa infections. In particular, the enzymes' ability to degrade alginate, a key component of mucoid biofilm matrix, has been the presumed mechanism by which they disrupt biofilms and enhance antibiotic efficacy. The systematic studies reported here show that, in an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy


Force Generation By Kinesin And Myosin Cytoskeletal Motor Proteins, F. Jon Kull, Sharyn A. Endow Jan 2013

Force Generation By Kinesin And Myosin Cytoskeletal Motor Proteins, F. Jon Kull, Sharyn A. Endow

Dartmouth Scholarship

Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central β-sheet - proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins - is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, …