Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

Arabidopsis

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 66

Full-Text Articles in Life Sciences

Investigation Into The Cell Wall And Cellulose Biosynthesis In Model Species And In The C4 Model Plant Setaria Viridis, Mizuki Tateno Jan 2016

Investigation Into The Cell Wall And Cellulose Biosynthesis In Model Species And In The C4 Model Plant Setaria Viridis, Mizuki Tateno

Theses and Dissertations--Plant and Soil Sciences

A uniform feature of all plant cells is the presence of a cell wall. The cell wall functions in facilitating directional expansion and is therefore important for cell shape and morphogenesis. All plant cell walls contain cellulose microfibrils embedded in a network of polysaccharides, lignin and protein. Cellulose is evolutionarily conserved and is made by all plants as well as other members of various taxonomic kingdoms. From a human perspective, the field of renewable energy has had an ever increasing interest in using the cell wall for production of renewable platform chemicals and fuels. However, the biosynthesis of these components …


A Novel Transcription Factor In Arabidopsis Thaliana Abiotic Stress Response, Achira S. Weerathunga Arachchilage Dec 2015

A Novel Transcription Factor In Arabidopsis Thaliana Abiotic Stress Response, Achira S. Weerathunga Arachchilage

University of New Orleans Theses and Dissertations

Plants respond to environmental stress by altering their gene expression. Under stress conditions some genes are activated and some genes are repressed. Even though a lot of work has been done to understand mechanisms of gene activation under abiotic stress very little information is available on how stress responsive genes are kept repressed under normal growth conditions. Recent work has revealed that plants use transcriptional repression as common mechanism of gene repression. Transcriptional repression is achieved by recruitment co-repressor complexes to the target genes. Recent studies have revealed that the co-repressor LUH complexes with SLK1 and SLK2 to silence Arabidopsis …


Genetic Analysis Of A Non-Germinating Mutant Of Arabidopsis Thaliana, Md Jakir Hossan Aug 2015

Genetic Analysis Of A Non-Germinating Mutant Of Arabidopsis Thaliana, Md Jakir Hossan

Electronic Thesis and Dissertation Repository

Seed germination is partially controlled by plant hormone gibberellins (GAs). Chemical mutagenesis yielded an Arabidopsis thaliana mutant gm11, which has an absolute gibberellin requirement for seed germination. This mutant exhibited phenotypes of GA-rescuable dwarfs, including dark-green leaves, and reduced fertility. However, with repeated GA treatment, gm11 develops into fertile plants with a nearly wild type phenotype. Bulked-segregant analysis mapped gm11 to the bottom arm of chromosome 1, and subsequent next-generation mapping revealed that the mutation is a G → A transition in At1g79460 (GA2), creating a premature stop codon. This gene encodes an ent-kaurene synthase (KS) which catalyzes …


Thermodynamic Analysis Of Phenylpropanoid Pathway In Arabidopsis Thanliana, Patrick J. Ioerger, Rohit Jaini, John A. Morgan Aug 2015

Thermodynamic Analysis Of Phenylpropanoid Pathway In Arabidopsis Thanliana, Patrick J. Ioerger, Rohit Jaini, John A. Morgan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Biofuels represent a renewable alternative to traditional fossil fuels. As dependence on fossil fuels rise so does the importance of improving the production of alternative fuels. Lignin poses one obstacle in the development of such alternative fuels. Its presence strengthens cell walls and hinders degradation of polysaccharides into monosaccharides, increasing cost and time while decreasing efficiency of the process. Lignin is composed of three monolignols, each of which is produced through the Phenylpropanoid pathway; a series of chemical reactions. This work aims to determine which reactions in the pathway are least thermodynamically favorable and thus most limiting. From metabolic mapping …


Detecting Genomic Regions Responsible For Resistance In Arabidopsis, Valeria Cancino, Anjali Iyer-Pascuzzi, Rucha Karve Aug 2015

Detecting Genomic Regions Responsible For Resistance In Arabidopsis, Valeria Cancino, Anjali Iyer-Pascuzzi, Rucha Karve

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ralstonia solanacearum is a soil-borne plant root colonizing pathogen and the casual agent of bacterial wilt (BW) disease. BW leads to severe yield loss in a wide variety of agricultural commodity crops, such as tomato, banana, and pepper. In this study, we look at the plant-pathogen interaction between Ralstonia solanacearum and various ecotypes of Arabidopsis thaliana with the goal of finding resistant ecotypes. To identify resistant ecotypes, seeds are first sterilized and left to soak in the dark. Then the seeds are plated on agar media, transferred to a growth chamber, and allowed to grow for 5 days. On day …


The Argos Gene Family Functions In A Negative Feedback Loop To Desensitize Plants To Ethylene, Muneeza I. Rai, Xiaomin Wang, Derek M. Thibault, Hyo Jung Kim, Matthew M. Bombyk, Brad M. Binder, Samina N. Shakeel, G. Eric Schaller Jun 2015

The Argos Gene Family Functions In A Negative Feedback Loop To Desensitize Plants To Ethylene, Muneeza I. Rai, Xiaomin Wang, Derek M. Thibault, Hyo Jung Kim, Matthew M. Bombyk, Brad M. Binder, Samina N. Shakeel, G. Eric Schaller

Dartmouth Scholarship

Ethylene plays critical roles in plant growth and development, including the regulation of cell expansion, senescence, and the response to biotic and abiotic stresses. Elements of the initial signal transduction pathway have been determined, but we are still defining regulatory mechanisms by which the sensitivity of plants to ethylene is modulated. We report here that members of the ARGOS gene family of Arabidopsis, previously implicated in the regulation of plant growth and biomass, function as negative feedback regulators of ethylene signaling. Expression of all four members of the ARGOS family is induced by ethylene, but this induction is blocked in …


Trip: Tracking Rhythms In Plants, An Automated Leaf Movement Analysis Program For Circadian Period Estimation, Kathleen Greenham, Ping Lou, Sara E. Remsen, Hany Farid, C Robertson Mcclung May 2015

Trip: Tracking Rhythms In Plants, An Automated Leaf Movement Analysis Program For Circadian Period Estimation, Kathleen Greenham, Ping Lou, Sara E. Remsen, Hany Farid, C Robertson Mcclung

Dartmouth Scholarship

Background: A well characterized output of the circadian clock in plants is the daily rhythmic movement of leaves. This process has been used extensively in Arabidopsis to estimate circadian period in natural accessions as well as mutants with known defects in circadian clock function. Current methods for estimating circadian period by leaf movement involve manual steps throughout the analysis and are often limited to analyzing one leaf or cotyledon at a time.

Methods: In this study, we describe the development of TRiP (Tracking Rhythms in Plants), a new method for estimating circadian period using a motion estimation algorithm that can …


Descriptive Analyses Of Pollen Surface Morphologies In The Model Systems Brassica Rapa And Arabidopsis Thaliana And Three Arabidopsis Pollen Wall Mutants By Scanning Electron Microscopy, Andrew B. Kirkpatrick May 2015

Descriptive Analyses Of Pollen Surface Morphologies In The Model Systems Brassica Rapa And Arabidopsis Thaliana And Three Arabidopsis Pollen Wall Mutants By Scanning Electron Microscopy, Andrew B. Kirkpatrick

Theses and Dissertations

The mechanisms behind the construction of the pollen wall are equally elaborate and mysterious. Previous studies primarily used sectioned tissue to elucidate the events involved in proper pollen development. This study proposed and evaluated a protocol for exposing developing microspores to be examined by Scanning Electron Microscopy (SEM). Utilizing this protocol, comparative analyses of the superficial features present at the early, middle, and late tetrad as well as at released microspore stages of the model plants Brassica rapa and Arabidopsis thaliana were conducted. The utility of the technique was then evaluated through the examination of three Arabidopsis pollen wall mutants …


Heterologous Expression Of Arabidopsis Thaliana Purple Acid Phosphatase Gene (Atpap15) In Crops For Phytoremediation Of Sites Contaminated With Excess Phosphorus, Jane Jeruto Bartonjo May 2015

Heterologous Expression Of Arabidopsis Thaliana Purple Acid Phosphatase Gene (Atpap15) In Crops For Phytoremediation Of Sites Contaminated With Excess Phosphorus, Jane Jeruto Bartonjo

Masters Theses & Specialist Projects

AtPAP15 is one of the purple acid phosphatases expressed by Arabidopsis thaliana that has been extensively studied. Purified AtPAP15 has been shown to exhibit both phytase and phosphomonoesterase activities in acidic pH with maximal activity at pH 4.5. AtPAP15 is a phosphorus starvation inducible (PSI) gene that is expressed highly during phosphorus deficient conditions. In the current study, AtPAP15 was overexpressed in Nicotiana tabaccum under cauliflower mosaic virus (CaMV35S) constitutive promoter. After PCR confirmation of the gene, plants were transferred to the greenhouse and allowed to grow in pots. The pots contained Sta-Green potting mix (Lowe’s Inc., Mooresville, North Carolina,U.S.). …


Search For Host Factors Involved In Attachment Of Agrobacterium Tumefaciens To Plants, Anna Petrovicheva Feb 2015

Search For Host Factors Involved In Attachment Of Agrobacterium Tumefaciens To Plants, Anna Petrovicheva

Dissertations, Theses, and Capstone Projects

Agrobacterium tumefaciens is able to infect a diverse array of plants and causes crown gall disease. Typically these bacteria attach to plant roots and transform the plant cells to induce tumors. The mechanism of this attachment in the infection process is not yet fully understood. Using wild type Arabidopsis thaliana, Columbia-0, and several Arabidopsis mutant lines as a binding target, we screened for A. thaliana mutants with altered adhesion.

The A. thaliana mutant lines were selected in The Arabidopsis Information Resource (TAIR) according to possible location of the resulting protein and similarity to known transformation mutants. Of these mutants …


Evaluating Potential Plant Hormone Cross Talk Between Auxin And Ethylene In Arabidopsis, Mia Lynne Brown Jan 2015

Evaluating Potential Plant Hormone Cross Talk Between Auxin And Ethylene In Arabidopsis, Mia Lynne Brown

Theses, Dissertations and Capstones

Auxin is the primary hormone responsible for plant growth and development. Regulation of auxin-response genes occurs through transcriptional activators (auxin response factors called ARFs) which bind to auxin response elements (AuxREs). Some auxin-responsive genes encode aminocyclopropane-1-carboxylic acid synthase (ACS) enzymes which regulate the production of the plant hormone ethylene. The major research objective was to evaluate transcriptional cross talk between auxin and ethylene. Both AuxREs and ethylene response elements were found in several ACS and ARF genes, suggesting cross talk between the two hormones at the transcriptional level. Analysis of transgenic Arabidopsis thaliana plants deficient in ARF7 and containing a …


Functional Characterization Of Metallothioneins In Arabidopsis And Barley, Nimnara Yookongkaew Oct 2013

Functional Characterization Of Metallothioneins In Arabidopsis And Barley, Nimnara Yookongkaew

Open Access Dissertations

Metalothioneins (MTs) are metal binding proteins that can bind metals such as Cu, Zn, and Cd but the functions of MTs in plants are largely unknown. To understand the function of MTs in Arabidopsis, T-DNA insertion mutants lacking 4 MT genes including MT1a, MT2a, MT2b and MT3 were developed. The quadruple mutant (mt1a/mt2a/mt2b/mt3) showed no visible phenotype under standard growth conditions. However, it accumulated higher Cu in leaves compared to wild type but lower Cu in seeds. Further analysis showed that triple mutants lacking both MT1a and MT2b, which are highly expressed in vascular tissues, had similar …


Dirigent Domain-Containing Protein Is Part Of The Machinery Required For Formation Of The Lignin-Based Casparian Strip In The Root, Prashant S. Hosmani, Takehiro Kamiya, John Danku, Sadaf Naseer, Niko Geldner, Mary Lou Guerinot, David Salt Aug 2013

Dirigent Domain-Containing Protein Is Part Of The Machinery Required For Formation Of The Lignin-Based Casparian Strip In The Root, Prashant S. Hosmani, Takehiro Kamiya, John Danku, Sadaf Naseer, Niko Geldner, Mary Lou Guerinot, David Salt

Dartmouth Scholarship

The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where …


Study Of Thermotolerance Mechanism In Gossypium Hirsutum Through Identification Of Heat Stress Genes, Jin Zhang Aug 2013

Study Of Thermotolerance Mechanism In Gossypium Hirsutum Through Identification Of Heat Stress Genes, Jin Zhang

Graduate Theses and Dissertations

ABSTRACT

Heat stress causes major losses to cotton seed and lint yield. Introduction of heat stress tolerance to Arkansas cotton varieties is highly desirable. However, very little is known about the molecular basis of heat stress tolerance in cotton. The present study attempted to identify heat stress tolerance genes in two heat-tolerant cotton cultivars, VH260 and MNH456, originating from Pakistan. Towards this, the expression profile of the cotton orthologs of sevenArabidopsisheat stress tolerance genes was studied in these two cultivars, and compared with the two heat-susceptible cotton cultivars, ST213 and ST4288, originating from Mississippi Delta region. In addition, physiological parameters …


Characterization Of A Putative Activation Domain In The Hulk Gene Family, Christopher Doan Jul 2013

Characterization Of A Putative Activation Domain In The Hulk Gene Family, Christopher Doan

Electronic Thesis and Dissertation Repository

The HULK gene family participates in regulation of both flowering time and development in the plant Arabidopsis thaliana. The proteins encoded by these genes share conserved domain structures including a proline-rich region (PRR) in the carboxyl-terminus. Based on sequence analysis and the presence of a proline-rich domain, it has been suggested that the HULKs are putative transcription factors in which HUA2 is known to regulate several late-flowering genes: FLC, FLM and MAF2.

To investigate the putative transcriptional activation domain in the carboxyl-terminus of the HULKs, full-length HULKs and deletion constructs were 3-AT titrated in yeast-one hybrids. It …


Mutational Analyses Of A Fork Head Associated Domain Protein, Dawdle, In Arabidopsis Thaliana, Lakshmi Ayiloor Narayanan, Dipaloke Mukherjee, Shuxin Zhang, Bin Yu, David Chevalier Jan 2013

Mutational Analyses Of A Fork Head Associated Domain Protein, Dawdle, In Arabidopsis Thaliana, Lakshmi Ayiloor Narayanan, Dipaloke Mukherjee, Shuxin Zhang, Bin Yu, David Chevalier

Center for Plant Science Innovation: Faculty and Staff Publications

DAWDLE (DDL) gene encodes a protein that contains an N-terminal arginine-rich domain and a C-terminal Fork Head Associated (FHA) domain in Arabidopsis thaliana. DDL protein is believed to function in microRNA biogenesis by mediating the recruitment of pri-microRNA to DICER-LIKE 1 and also stabilizing the microRNA. The aim of this study was to conduct a structure-function analysis to identify the regions in DDL that are of functional significance. Targeted Induced Local Lesions in Genome screen was performed in the Columbia erecta-105 background of Arabidopsis resulting in the identification of eight point mutations spanning DDL. The mutants were characterized by …


A Thraustochytrid Diacylglycerol Acyltransferase 2 With Broad Substrate Specificity Strongly Increases Oleic Acid Content In Engineered Arabidopsis Thaliana Seeds, Chunyu Zhang, Umidjon Iskandarov, Elliott T. Klotz, Robyn L. Stevens, Rebecca E. Cahoon, Tara J. Nazarenus, Suzette L. Pereira, Edgar B. Cahoon Jan 2013

A Thraustochytrid Diacylglycerol Acyltransferase 2 With Broad Substrate Specificity Strongly Increases Oleic Acid Content In Engineered Arabidopsis Thaliana Seeds, Chunyu Zhang, Umidjon Iskandarov, Elliott T. Klotz, Robyn L. Stevens, Rebecca E. Cahoon, Tara J. Nazarenus, Suzette L. Pereira, Edgar B. Cahoon

Center for Plant Science Innovation: Faculty and Staff Publications

Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol …


The Role Of Polyadenylation In Seed Germination, Liuyin Ma Jan 2013

The Role Of Polyadenylation In Seed Germination, Liuyin Ma

Theses and Dissertations--Plant and Soil Sciences

Seed germination has many impacts on the uses of seeds, and is an important subject for study. Seed germination is regulated at both transcriptional and post-transcriptional levels. Therefore, it is important to study how polyadenylation regulates gene expression during seed germination. To this end, a modified Illumina GAIIx sequencing protocol (described in Chapter Two) was developed that allows deep coverage of poly(A) site position and distribution.

Alternative polyadenylation (APA) regulates gene expression by choosing one potential poly(A) site on a precursor RNA consequentially shortening/lengthening the mRNA relative to other possible sites. To further explore this phenomenon, genes affected by APA …


Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit Oct 2012

Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. …


Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert Sep 2012

Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert

Dartmouth Scholarship

Iron deficiency induces a complex set of responses in plants, including developmental and physiological changes, to increase iron uptake from soil. In Arabidopsis, many transporters involved in the absorption and distribution of iron have been identified over the past decade. However, little is known about the signaling pathways and networks driving the various responses to low iron. Only the basic helix–loop–helix (bHLH) transcription factor FIT has been shown to control the expression of the root iron uptake machinery genes FRO2 and IRT1. Here, we characterize the biological role of two other iron-regulated transcription factors, bHLH100 and bHLH101, in iron homeostasis. …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …


Elucidating The Mechanism Of Organelle Trafficking In Arabidopsis Thaliana: The Mya2 Globular Tail Interacts With Atrabc2a., Su Ji Jeong May 2012

Elucidating The Mechanism Of Organelle Trafficking In Arabidopsis Thaliana: The Mya2 Globular Tail Interacts With Atrabc2a., Su Ji Jeong

Chancellor’s Honors Program Projects

No abstract provided.


Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit Mar 2012

Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit

Biology Faculty Publications & Presentations

There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with …


Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit Feb 2012

Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit

Biology Faculty Publications & Presentations

Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters between them. To investigate how cells select particular MT contact angles for bundling, we used an in vitro reconstitution approach consisting of dynamic MTs and the MT-cross-linking protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for antiparallel overlapping MTs is about three times higher than its affinity for single MTs and parallel overlapping MTs. We also …


The Dna- And Rna-Binding Protein Factor Of Dna Methylation 1 Requires Xh Domain-Mediated Complex Formation For Its Function In Rna-Directed Dna Methylation, Meng Xie, Guodong Ren, Chi Zhang, Bin Yu Jan 2012

The Dna- And Rna-Binding Protein Factor Of Dna Methylation 1 Requires Xh Domain-Mediated Complex Formation For Its Function In Rna-Directed Dna Methylation, Meng Xie, Guodong Ren, Chi Zhang, Bin Yu

Center for Plant Science Innovation: Faculty and Staff Publications

Studies have identified a sub-group of SGS3-LIKE proteins including FDM1–5 and IDN2 as key components of RNA-directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5' overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss-of-function of FDM1. These results demonstrate that XH domainmediated …


The Role Of Auxin Resistant 1 (Axr1) In Arabidopsis Cytokinin Signaling, Yan Li Jan 2012

The Role Of Auxin Resistant 1 (Axr1) In Arabidopsis Cytokinin Signaling, Yan Li

Theses and Dissertations--Plant and Soil Sciences

The plant hormone cytokinin plays essential roles in many aspects of growth and development. The cytokinin signal is transmitted by a multistep phosphorelay to the members of two functionally antagonistic classes of Arabidopsis response regulators (ARRs): the type-B ARRs (response activators) and type-A ARRs (negative-feedback regulators). Previous studies have shown that mutations in AXR1, encoding a subunit of the E1 enzyme in the related to ubiquitin (RUB) modification pathway, leads to decreased cytokinin sensitivity. This research shows that the cytokinin resistance of axr1 seedlings is suppressed by loss-of-function of type-A ARRs and that the cytokinin resistance caused by …


Propiconazole Is A Specific And Accessible Brassinosteroid (Br) Biosynthesis Inhibitor For Arabidopsis And Maize., Burkhard Schulz, Thomas Hartwig, Claudia Corvalan, Norman Best, Joshua Budka, Sunghwa Choe Jan 2012

Propiconazole Is A Specific And Accessible Brassinosteroid (Br) Biosynthesis Inhibitor For Arabidopsis And Maize., Burkhard Schulz, Thomas Hartwig, Claudia Corvalan, Norman Best, Joshua Budka, Sunghwa Choe

Burkhard Schulz

Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the …


Critical Roles Of Rna-Binding Proteins In Mirna Biogenesis In Arabidopsis, Guodong Ren, Bin Yu Jan 2012

Critical Roles Of Rna-Binding Proteins In Mirna Biogenesis In Arabidopsis, Guodong Ren, Bin Yu

Center for Plant Science Innovation: Faculty and Staff Publications

MicroRNAs (miRNAs) are key regulators of gene expression and play critical roles in modulating metabolism, development and physiology in animals and plants. miRNA levels are transcriptionally and post-transcriptionally controlled for their proper function. Recent studies have shown that RNA-binding proteins play important roles in producing miRNAs by affecting the accurate and/or efficient processing of precursors of miRNAs. Many of these RNA-binding proteins also have roles in general RNA metabolism, indicating potential connections between miRNA biogenesis and other RNA metabolism. Here, we focus on the function of several RNA-binding proteins in miRNA biogenesis in Arabidopsis.


Transcriptomic Characterization Of A Synergistic Genetic Interaction During Carpel Margin Meristem Development In Arabidopsis Thaliana, April N. Wynn, Elizabeth E. Rueschhoff, Robert G. Franks Oct 2011

Transcriptomic Characterization Of A Synergistic Genetic Interaction During Carpel Margin Meristem Development In Arabidopsis Thaliana, April N. Wynn, Elizabeth E. Rueschhoff, Robert G. Franks

Biological Sciences Research

In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thalianaovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using …


Single Molecule Analysis Of The Arabidopsis Fra1 Kinesin Shows That It Is A Functional Motor Protein With Unusually High Processivity, Chuanmei Zhu, Ram Dixit Sep 2011

Single Molecule Analysis Of The Arabidopsis Fra1 Kinesin Shows That It Is A Functional Motor Protein With Unusually High Processivity, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

The Arabidopsis FRA1 kinesin contributes to the organization of cellulose microfibrils through an unknown mechanism. The cortical localization of this kinesin during interphase raises the possibility that it transports cell wall-related cargoes along cortical microtubules that either directly or indirectly influence cellulose microfibril patterning. To determine whether FRA1 is an authentic motor protein, we combined bulk biochemical assays and single molecule fluorescence imaging to analyze the motor properties of recombinant, GFP-tagged FRA1 containing the motor and coiled-coil domains (designated as FRA1(707)–GFP). We found that FRA1(707)–GFP binds to microtubules in an ATP-dependent manner and that its ATPase activity is dramatically stimulated …