Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

Arabidopsis

University of Missouri, St. Louis

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman Sep 2021

Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman

Undergraduate Research Symposium

Auxins are important hormones in plants that regulate growth and development. Disruptions in the auxin biosynthesis pathway result in morphological changes in phenotypes in the model plant Arabidopsis thaliana, including differences in root and leaf formation. Mutations in the Tryptophan Aminotransferase of Arabidopsis (TAA1) and YUCCA (YUC4) genes interfere with the plant's ability to synthesize Indole-3-acetic acid (IAA), the primary auxin involved in plant development. IBR1 and IBR3 act in the multistep conversion of indole-3-butyric acid (IBA) to IAA. ILL2, IAR3, and ILR1 hydrolyze IAA-amino acid conjugates into free IAA. The goal of …