Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Effect Of Substrate Composition And Alignment On Corneal Cell Phenotype, Donna Phu '09, Lindsay S. Wray '08, Robert V. Warren '10, Richard C. Haskell, Elizabeth J. Orwin Jan 2011

Effect Of Substrate Composition And Alignment On Corneal Cell Phenotype, Donna Phu '09, Lindsay S. Wray '08, Robert V. Warren '10, Richard C. Haskell, Elizabeth J. Orwin

All HMC Faculty Publications and Research

Corneal blindness is a significant problem treated primarily by corneal transplants. Donor tissue supply is low, creating a growing need for an alternative. A tissue-engineered cornea made from patient-derived cells and biopolymer scaffold materials would be widely accessible to all patients and would alleviate the need for donor sources. Previous work in this lab led to a method for electrospinning type I collagen scaffolds for culturing corneal fibroblasts ex vivo that mimics the microenvironment in the native cornea. This electrospun scaffold is composed of small-diameter, aligned collagen fibers. In this study, we investigate the effect of scaffold nanostructure and composition …


Immunogold Labeling To Enhance Contrast In Optical Coherence Microscopy Of Tissue Engineered Corneal Constructs, Chris B. Raub, Elizabeth J. Orwin, Richard C. Haskell Sep 2004

Immunogold Labeling To Enhance Contrast In Optical Coherence Microscopy Of Tissue Engineered Corneal Constructs, Chris B. Raub, Elizabeth J. Orwin, Richard C. Haskell

All HMC Faculty Publications and Research

Our lab has used an optical coherence microscope (OCM) to assess both the structure of tissue-engineered corneal constructs and their transparency. Currently, we are not able to resolve cells versus collagen matrix material in the images produced. We would like to distinguish cells in order to determine if they are viable while growing in culture and also if they are significantly contributing to the light scattering in the tissue. In order to do this, we are currently investigating the use of immunogold labeling. Gold nanoparticles are high scatterers and can create contrast in images. We have conjugated gold nanoparticles to …