Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 99

Full-Text Articles in Life Sciences

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander May 2024

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander

Student Theses and Dissertations

Aerobic metabolism is known to generate damaging ROS, particularly hydrogen peroxide. Reactive oxygen species (ROS) are highly reactive molecules containing oxygen that have the potential to cause damage to cells and tissues in the body. ROS are highly reactive atoms or molecules that rapidly interact with other molecules within a cell. Intracellular accumulation can result in oxidative damage, dysfunction, and cell death. Due to the limitations of H2O2 (hydrogen peroxide) detectors, other impacts of ROS exposure may have been missed. HyPer7, a genetically encoded sensor, measures hydrogen peroxide emissions precisely and sensitively, even at sublethal levels, during …


Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto Feb 2024

Methamphetamine-Induced Dna Double-Stranded Breaks: The Impact Of The Dopamine Transporter And Insights Into The Mechanisms Of Dna Damage In Mouse Neuro 2a Cells, Lizette Couto

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) abuse remains a global health concern, with emerging evidence highlighting its genotoxic potential. In the central nervous system METH enters dopaminergic cells primarily through the dopamine transporter (DAT), which controls the dynamics of dopamine (DA) neurotransmission by driving the reuptake of extracellular DA into the presynaptic neuronal cell. Additional effects of METH on the storage of DA in synaptic vesicles lead to the dysregulated cytosolic accumulation of DA. Previous studies have shown that after METH disrupts intracellular vesicular stores of DA, the excess DA in the cytosol is rapidly oxidized. This generates an abundance of reactive oxygen species …


Targeting Strategies To Optimize The Therapeutic Potential Of Gold Compounds Against Her2-Positive Breast Cancers, Afruja Ahad Feb 2024

Targeting Strategies To Optimize The Therapeutic Potential Of Gold Compounds Against Her2-Positive Breast Cancers, Afruja Ahad

Dissertations, Theses, and Capstone Projects

The overexpression of HER2 accounts for 20-30% of breast cancer tumors and not only serves as a marker for poor predictive clinical outcomes but also as a target for treatment. Antibody-drug conjugates (ADCs) combine the selectivity of monoclonal antibodies (mAbs) with the efficacy of chemotherapeutic drugs to provide targeted treatment without toxicity to normal tissue. Most of the ADCs currently in the clinic for cancer chemotherapy are based on complex organic molecules. In contrast, the conjugation of metallodrugs to mAbs has been overlooked when there is enormous potential in this area with the resurgence of metal-based drugs as prospective cancer …


Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner Feb 2024

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner

Dissertations, Theses, and Capstone Projects

The examination of the cell cycle carries significant implications for the biology, health, and overall existence of all living things. These implications span from the development and growth of these organisms to the aging process and cancer, as well as the potential of stem cell therapies to repair diseases and injuries. Numerous proteins of the cell cycle are essential for cellular division and proliferation and are widely conserved over the course of evolution. In this work, we aimed to investigate the molecular processes of protein-protein interactions in cell cycle proteins, centering on two key players: Cdc6 in budding yeast and …


Examining Transcriptional Regulators During Muscle Development In Drosophila Melanogaster, Chaamy Yapa May 2023

Examining Transcriptional Regulators During Muscle Development In Drosophila Melanogaster, Chaamy Yapa

Student Theses and Dissertations

In Drosophila melanogaster embryos, a distinct approach to study the transcriptional regulation is to examine the larval somatic muscle development. Transcription factors are essential regulatory proteins that help to control gene expression and respond to signaling pathways and various cues. Today, there are at least twenty transcription factors that have been discovered to contribute to the development of the 30 distinct larval somatic muscles in each abdominal hemisegment of Drosophila melanogaster. Several studies have already been conducted on muscle regulatory transcription factors including midline and apterous. These transcription factors were shown to control the development of muscles through mutant …


The Effects Of Glycolytic Mutations In Drosophila Melanogaster Muscle Development, Coco Lim May 2023

The Effects Of Glycolytic Mutations In Drosophila Melanogaster Muscle Development, Coco Lim

Student Theses and Dissertations

Muscle atrophy, or muscle wasting, is caused due to lack of physical activity for an extended period of time, due to muscle diseases (such as muscle dystrophies), cancer chemotherapies, and aging. It is also extensively found on astronauts after spaceflight, particularly missions of long durations. Muscle cells are dependent on different metabolic pathways to optimize Adenosine triphosphate (ATP) production to compensate for muscle exertion. Glycolysis converts glucose into ATP producing pyruvate, which can be sent into the citric acid cycle or converted to lactate (lactic acid). Muscles preferentially use lactate production, despite the fact that fewer molecules of ATP are …


Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska May 2023

Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska

Student Theses and Dissertations

Buildup of oxidative stress and mitochondrial dysfunction are well known characteristics of both sporadic and hereditary amyotrophic lateral sclerosis (ALS). While both forms of the disease seem to arise from common cellular dysfunction, the genetic disease is studied to a much greater extent. Engineering novel animal models of the sporadic form of the disease is crucial for development of druggable targets to treat ALS and understand the underlying mechanisms. Interestingly, accumulation of oxidative stress by exacerbated emission of reactive oxygen species (ROS) from presynaptic mitochondria is a hallmark of both hereditary and sporadic ALS. Previous work by our laboratory showed …


Auditory Processing Deficits In Msh2-Ko Mice Are Linked To Aberrant Inhibitory Neuron Function In The Thalamic Reticular Nucleus, Sadia N. Rahman Jan 2023

Auditory Processing Deficits In Msh2-Ko Mice Are Linked To Aberrant Inhibitory Neuron Function In The Thalamic Reticular Nucleus, Sadia N. Rahman

Dissertations and Theses

DNA repair mechanisms are crucial for both cellular development and function. One highly conserved DNA repair factor is Mut-S Homolog 2 (Msh2), which corrects base-base mismatches and insertion/deletion loops. In humans, defects in this repair pathway are linked to diseases that have severe neurological pathologies. These include Lynch syndrome, Huntington’s disease and demyelination of the corpus callosum. The fundamental role of Msh2 in brain function is unknown. Using an Msh2-/- mouse model we began an exploration of its impact on the processing of sensory information, a crucial function to an animal’s survival. The goal of this …


Function Of Atm And Msh2 During Dna Repair And Recombination, Emily Sible Sep 2022

Function Of Atm And Msh2 During Dna Repair And Recombination, Emily Sible

Dissertations, Theses, and Capstone Projects

Class switch recombination (CSR) produces secondary immunoglobulin isotypes and requires AID-dependent DNA deamination of intronic switch (S) regions within the immunoglobulin heavy chain (Igh) gene locus. Non-canonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal S regions. ATM-dependent phosphorylation of AID at serine-38 (pS38-AID) promotes its interaction with APE1, a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice …


Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik Sep 2022

Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik

Dissertations, Theses, and Capstone Projects

Clustered protocadherins (Pcdhs) are a family of 60 adhesion-like molecules forming a neural barcode. In vertebrate neurons, 60 Pcdhs are coded by a large gene cluster. Numerous axons in the cluster are coding for the different extracellular, transmembrane, variable portion of the cytoplasmic and constant cytoplasmic domains where their expression is controlled epigenetically. These proteins mediate interactions between axons, dendrites, and glial cells during neural development. Yet, Pcdhs are not strictly adhesion molecules. In the amacrine cells of the retina, Pcdhs promote avoidance of the same cell dendrites, where in the cortex Pcdhs promote interactions between dendrites and astrocytes. In …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Gamma Protocadherin Synaptic Localization And Intracellular Trafficking Is Consistent With Distinct Adhesive And Anti-Adhesive Roles In Development, Nicole Lamassa Sep 2022

Gamma Protocadherin Synaptic Localization And Intracellular Trafficking Is Consistent With Distinct Adhesive And Anti-Adhesive Roles In Development, Nicole Lamassa

Dissertations, Theses, and Capstone Projects

Clustered protocadherins (Pcdhs) constitute a family of cell adhesion molecules with approximately 60 Pcdh genes clustered in a 1 MB locus on chromosome 5q31 in humans. The Pcdh gene cluster is subdivided into α, β, and γ subclusters which encode related proteins. Individual neurons activate different subsets of Pcdh-α, Pcdh-β and Pcdh-γ genes by epigenetic mechanisms to generate distinct Pcdh adhesive units expressed by each neuron. This is thought to serve as a “surface barcode” for single-cell identity and synaptic recognition in the nervous system. The actual role for Pcdhs in neural development is still relatively unknown and different roles …


Nup211 Plays An Important Role In Regulating Mrna Export And Stress Response, Ayana Ikenouchi Aug 2022

Nup211 Plays An Important Role In Regulating Mrna Export And Stress Response, Ayana Ikenouchi

Theses and Dissertations

Nup211 is a nuclear pore basket component in Schizosaccharomyces pombe and roles in the gating functions of NPCs. Using RT-qPCR, I found that in nup211-shutoff cells, the transcript levels of genes in mRNA export and stress-response pathways were significantly changed, suggesting nup211 is involved in regulating stress response pathways.


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi Sep 2021

Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi

Dissertations, Theses, and Capstone Projects

Ovarian Cancer (OC) is the most lethal female malignancy worldwide, mainly due to its high recurrence rate and poor diagnosis. Most patients present with late stage of the disease, and less than 25% of patients survive the five years mark. Nanotherapy provides significant and unique benefits for drug efficacy, as nanoparticles (NPs) can increase the solubility, bioavailability, and permeability of many potent drugs. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successful biodegradable polymers used in NPs formulations, mainly due to its biocompatibility and biodegradability. Polyethylene glycol (PEG) is one of the most commonly used moieties to prolong the NPs …


The Role Of Tbx2 In Germ Layer Suppression And Dorsoventral Patterning During Early Vertebrate Development, Shoshana Reich Sep 2021

The Role Of Tbx2 In Germ Layer Suppression And Dorsoventral Patterning During Early Vertebrate Development, Shoshana Reich

Dissertations, Theses, and Capstone Projects

The differentiation of the three primary germ layers is precisely regulated by inductive cues, the intracellular networks through which these signals are transduced, and a broad array of nuclear proteins, such as transcription factors and epigenetic modifiers. Precise regulation of these various factors is crucial to proper development. Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators, are expressed in the presumptive mesendoderm and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve variously as regulators …


Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen Sep 2021

Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen

Dissertations, Theses, and Capstone Projects

In the vertebrate retina, cone photoreceptors are crucial for high acuity color vision. Several retinal diseases lead to loss of cones and there is a need to identify the normal developmental genesis of these cells to inform the development of stem cell-based therapies. Cone genesis has previously been shown to be repressed by Notch signaling, however, the mechanism by which Notch signaling controls cone fate determination is still unclear. It has been identified that cone photoreceptors are formed from multipotent retinal progenitor cells (RPCs) that first generate genetically-defined, restricted RPCs with limited mitotic and fate potential to preferentially form cones …


Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine Sep 2021

Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine

Dissertations, Theses, and Capstone Projects

Cancer cells often lose expression of the p53 protein or express mutant forms of p53. Some of these mutant p53 proteins, called gain-of-function mutant p53, have gained oncogenic functions. Previously, our group observed mutant p53 R273H interacts with replicating DNA and upregulates the chromatin localization of several DNA replication factors including PCNA, MCM2-7, and PARP1 (termed the mtp53-PARP-MCM axis). In this thesis, we explore the contribution of mutant p53 and PARP1 in castration-resistant prostate cancer (mutant p53 P223L and V274F) and triple-negative breast cancer (mutant p53 R273H). In the castration-resistant prostate cancer cell line DU145, we examine two mutant p53 …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Evolution And Development Of The Seed Coat In Gymnosperms, Cecilia Zumajo Jun 2021

Evolution And Development Of The Seed Coat In Gymnosperms, Cecilia Zumajo

Dissertations, Theses, and Capstone Projects

Gymnosperms and angiosperms are the most abundant plant lineages on earth and constitute a turning point in the evolution of plants because they are at the origin of the seed, a key morphological and developmental novelty in the evolution of land plant. Although the morphological variation of the seed, across seed plants, may on its own, explain the complexity of this structure, the origin, and evolution are even more, the understanding of these topics is still under discussion. Evidence shows that previous studies have often lacked the component of gene expression, particularly in species that are not model species. The …


Molecular Mechanisms Underlying Cell Fate Choice Within Specific Retinal Lineages, Estie Schick Jun 2021

Molecular Mechanisms Underlying Cell Fate Choice Within Specific Retinal Lineages, Estie Schick

Dissertations, Theses, and Capstone Projects

During development, retinal progenitor cells (RPCs) divide to form all of the cell types that make up the retina. Multipotent RPCs are competent to generate all retinal cell types, while restricted RPCs form specific lineages of cells. In particular, one genetically-defined RPC type preferentially gives rise to cone photoreceptors and horizontal cells. Many of the mechanisms that are responsible for directing cell fate choice within this lineage are unknown. This thesis largely focuses on examining the development of specific cell types and subtypes from restricted RPCs and on investigating the gene regulatory events that underlie cone photoreceptor and horizontal cell …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Insights Into Leptopilina Spp. Immune-Suppressive Strategies Using Mixed-Omics And Molecular Approaches, Brian Wey Feb 2021

Insights Into Leptopilina Spp. Immune-Suppressive Strategies Using Mixed-Omics And Molecular Approaches, Brian Wey

Dissertations, Theses, and Capstone Projects

Host-parasite interactions influence the biology of each over the course of evolution. Parasite success allows for the passage of potent virulence strategies from generation to generation. Host success passes stronger immunity and resistance strategies to the following generations as well. Only by studying both partners within their natural contexts can we begin to understand the relationship between the two and how immune mechanisms and virulence strategies interact as a molecular arms race.

In this work, we focus on a natural host-parasite pair, the Drosophila-Leptopilina model. Leptopilina species are parasites of several fruit fly species, including Drosophila melanogaster. This model …


Development And Maintenance Of The Thymic Epithelial Microenvironment, Shami Chakrabarti Feb 2021

Development And Maintenance Of The Thymic Epithelial Microenvironment, Shami Chakrabarti

Dissertations, Theses, and Capstone Projects

The thymus plays a critical role in adaptive immunity by providing a suitable microenvironment for developing and selecting the functional self-tolerant T-cell population. Thymic epithelial cells play an essential role in the development of a naïve, self-tolerant T-cell population. Paradoxically thymus undergoes acute age-related involution, which in turn causes loss of functional T-cell populations. Involution reduces the functionality of the thymus markedly, but the thymus can still develop self-tolerant naïve T-cells. It is crucial to understand how the thymic microenvironment is maintained to provide a suitable T-cell population for life. It has been previously demonstrated that the thymic epithelial homeostasis …


Anti-Cancer Effects By Interleukin 24, Xuelin Zhong Feb 2021

Anti-Cancer Effects By Interleukin 24, Xuelin Zhong

Dissertations, Theses, and Capstone Projects

Cancers develop as some cells acquire the ability, either by exogenous stimulation or by spontaneous mutation, to keep growing despite normal restraints. Up-regulating translation of oncogenes involved in cell proliferation and tumor development and down-regulating translation of tumor-suppressors that normally suppress tumor development are two most common mechanisms by which cancers develop. Therefore, it is crucial to study how these proteins get either up-regulated or down-regulated at translational level.

The eukaryotic translation initiation factor, which is composed of subunits such as eIF4A, eIF4G and eIF4E, is one of the key factors that contribute to efficient translation initiation. Interleukin 24 (IL-24), …


Cell Cycle Progression Effects Of Albumin, Sharmeen Uddin Feb 2021

Cell Cycle Progression Effects Of Albumin, Sharmeen Uddin

Dissertations, Theses, and Capstone Projects

Progression through G1 phase of the cell cycle is controlled largely by growth factors in early G1 and by nutrients in late G1 indicating sufficient raw material for cell division. We previously mapped a late G1 cell cycle checkpoint for lipids upstream from a mammalian target of rapamycin complex 1 (mTORC1)-mediated checkpoint and downstream from a mid-G1 checkpoint known as the Restriction point. We therefore investigated a role for lipids in progression through late G1 into S-phase. Quiescent BJ-hTERT human fibroblasts primed back into G1 with FBS treatment, were treated with a mixture of …


A New Mathematical Theory For The Dynamics Of Large Tumor Populations, A Potential Mechanism For Cancer Dormancy & Recurrence And Experimental Observation Of Melanoma Progression In Zebrafish, Adeyinka A. Lesi Jan 2021

A New Mathematical Theory For The Dynamics Of Large Tumor Populations, A Potential Mechanism For Cancer Dormancy & Recurrence And Experimental Observation Of Melanoma Progression In Zebrafish, Adeyinka A. Lesi

Dissertations and Theses

Cancer, a family of over a hundred disease varieties, results in 600,000 deaths in the U.S. alone. Yet, improvements in imaging technology to detect disease earlier, pharmaceutical developments to shrink or eliminate tumors, and modeling of biological interactions to guide treatment have prevented millions of deaths. Cancer patients with initially similar disease can experience vastly different outcomes, including sustained recovery, refractory disease or, remarkably, recurrence years after apparently successful treatment. The current understanding of such recurrences is that they depend on the random occurrence of critical mutations. Clearly, these biological changes appear to be sufficient for recurrence, but are they …


Regulation Of A Messenger: Raising Oskar, It Takes A Village, Livia V. Bayer Sep 2020

Regulation Of A Messenger: Raising Oskar, It Takes A Village, Livia V. Bayer

Dissertations, Theses, and Capstone Projects

D. melanogaster oogenesis serves as an excellent system to study the life of an mRNA. Tremendous work has been done to understand the numerous complex mechanisms of mRNA regulation, still there is still so much that is yet to be discovered. In this thesis, I present studies I carried out to address several aspects of oskar mRNA post-transcriptional regulation. Leading me to extend our current understanding of the carefully controlled regulation of oskar mRNA life cycle via a myriad of proteins. I found that a specific NPC component, Nup154 is necessary not only for its export from the nucleus, but …


Dictyostelium Discoideum Protein Kinase C-Orthologue Pkca Regulates The Actin Cytoskeleton Through Interaction With Phospholipase D And P21-Activated Kinase, Sean Singh Jun 2020

Dictyostelium Discoideum Protein Kinase C-Orthologue Pkca Regulates The Actin Cytoskeleton Through Interaction With Phospholipase D And P21-Activated Kinase, Sean Singh

Dissertations, Theses, and Capstone Projects

Proper regulation of the actin cytoskeleton is crucial to many cellular processes. Many of these processes are regulated by extracellular signaling cues, which direct changes in the actin cytoskeleton, resulting in changes to cellular morphology, and directed motility. The social amoeba, Dictyostelium discoideum, is used as a simple model system to study the translation of extracellular signals to the actin cytoskeleton. When starved, these unicellular amoebae undergo a multicellular developmental process characterized by a tightly regulated sequence of signaling events. This results in chemotaxis and formation of a multicellular aggregate, and ultimately cell differentiation and the formation of a fruiting …


Protein Phosphatase 2a Suppresses Spindle Elongation In Saccharomyces Cerevisiae, Shoily P. Khondker Jun 2020

Protein Phosphatase 2a Suppresses Spindle Elongation In Saccharomyces Cerevisiae, Shoily P. Khondker

Dissertations, Theses, and Capstone Projects

Eukaryotic cell division is an essential process that is carried out by the cell cycle, a tightly controlled process that has been extensively studied in the budding yeast Saccharomyces cerevisiae. The cell cycle is driven by Cyclin Dependent Kinase (Cdk1) activity. Protein phosphatase 2A-Cdc55 (PP2ACdc55) reverses Cdk1 phosphorylation events during late stages of the cell cycle to ensure the correct order of events. This thesis presents evidence that the anaphase inhibitor Pds1 is a PP2ACdc55 target. Pds1 binds to and inhibits separase (Esp1). Esp1 triggers sister chromatid segregation by cleaving the cohesin complex that holds the …