Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

City University of New York (CUNY)

Theses/Dissertations

Cell cycle

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner Feb 2024

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner

Dissertations, Theses, and Capstone Projects

The examination of the cell cycle carries significant implications for the biology, health, and overall existence of all living things. These implications span from the development and growth of these organisms to the aging process and cancer, as well as the potential of stem cell therapies to repair diseases and injuries. Numerous proteins of the cell cycle are essential for cellular division and proliferation and are widely conserved over the course of evolution. In this work, we aimed to investigate the molecular processes of protein-protein interactions in cell cycle proteins, centering on two key players: Cdc6 in budding yeast and …


Protein Phosphatase 2a Suppresses Spindle Elongation In Saccharomyces Cerevisiae, Shoily P. Khondker Jun 2020

Protein Phosphatase 2a Suppresses Spindle Elongation In Saccharomyces Cerevisiae, Shoily P. Khondker

Dissertations, Theses, and Capstone Projects

Eukaryotic cell division is an essential process that is carried out by the cell cycle, a tightly controlled process that has been extensively studied in the budding yeast Saccharomyces cerevisiae. The cell cycle is driven by Cyclin Dependent Kinase (Cdk1) activity. Protein phosphatase 2A-Cdc55 (PP2ACdc55) reverses Cdk1 phosphorylation events during late stages of the cell cycle to ensure the correct order of events. This thesis presents evidence that the anaphase inhibitor Pds1 is a PP2ACdc55 target. Pds1 binds to and inhibits separase (Esp1). Esp1 triggers sister chromatid segregation by cleaving the cohesin complex that holds the …