Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Cancer

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 102

Full-Text Articles in Life Sciences

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono May 2023

Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono

Seton Hall University Dissertations and Theses (ETDs)

Osteoblast-targeting peptides in the treatment of bone disease is a new and novel approach to offering effective treatment of various cancers and can be used in bio-medical, medicinal chemistry and biotechnology applications. By targeting adhesion proteins produced by osteoblast cells, certain cancers which migrate and metastasize to the bone may be more effectively treated. An osteoblast-targeting peptide composed of Ser-Asp-Ser-Ser-Asp (SDSSD) which selectively binds to osteoblast cells via periostin has recently been identified. This peptide was functionalized with polyurethane, generating nanomicelles which encapsulated RNA for the therapeutic treatment of osteoporosis. This study has served as the basis for the research …


A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


Investigation Of Mechanical Regulation On Stat3 Activity And Mmp Production, Jaxson R. Libby Jan 2023

Investigation Of Mechanical Regulation On Stat3 Activity And Mmp Production, Jaxson R. Libby

Honors Theses and Capstones

Transcription factor, STAT3, is inappropriately expressed in cancer cells, and has contrasting activation in 2D versus 3D microenvironments. 2D plates are often used for drug screening and do not always recapitulate in vivo responses. To combat inaccurate 2D drug studies, a 3D hydrogel was created to support the growth of cancer cells into a tumor-like environment. The hydrogel consists of a biocompatible dextran homopolysaccharide, cell adhesion RGD sequences, and crosslinker MMP labile peptides. A pH dependent reaction couples the RGD sequences to dextran then the polymers are crosslinked into a gel. Crosslinking is accomplished using terminal cysteine peptide sequences, allowing …


Development Of Multivalent Dna-Peptide Nucleosome Mimetics And Multi-Domain Protein Inhibitors That Directly Or Indirectly Target The E3 Ligase Uhrf1, Li Gu Jan 2023

Development Of Multivalent Dna-Peptide Nucleosome Mimetics And Multi-Domain Protein Inhibitors That Directly Or Indirectly Target The E3 Ligase Uhrf1, Li Gu

University of the Pacific Theses and Dissertations

UHRF1 is an E3 ubiquitin ligase and a key epigenetic regulator establishing a crosstalk between DNA methylation and histone modification. Despite the important biochemical role of UHRF1 in cells, its overexpression has been found in almost all primary cancer types including breast cancer, lung cancer and so on. Numerous evidence indicates a strong link between tumorigenesis and UHRF1 overexpression, supporting its potential as a universal biomarker for cancer. However, UHRF1 is “yet-to-be drugged” and no highly potent chemical probes have been developed to target UHRF1 to date. In this study, we proposed two drug design approaches for UHRF1. The first …


Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder Dec 2022

Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder

Honors College Theses

Photodynamic therapy (PDT) is considered to be a potential replacement for traditional methods of chemotherapy. It includes the administration of photosensitizing agents (PS), which generate reactive oxygen species (ROS) upon excitation at a specific wavelength. With new outlooks and techniques, cancer research is advancing each day. It has allowed the progress of several theranostic drug delivery systems (DDS) exploring the area of nanomedicine.2 In the present work, a Rhodamine derivative, Rhodamine 6G (R6G) was used as the PS. In general, rhodamine compounds undergo cytotoxic reactions on photoexcitation by electron transfer reactions with folic acid within cells, making them a favorable …


Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs Jun 2022

The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs

Undergraduate Honors Theses

Aggrephagy, a type of autophagy, is an essential cellular process by which protein aggregates are collected and broken down in the lysosome. Protein aggregates are implicated in several diseases including Alzheimer’s disease, diabetes, and cancer. Here, we investigate the ATG13-ATG101 protein complex, a sub-complex of the canonical ULK1 complex whose regulatory role in aggrephagy is not completely understood. We also develop a protein fragment complementation (PFC) assay using the biotin ligase TurboID to study the functions of the ATG13-ATG101 complex with increased specificity. We demonstrate that ATG13 is required for optimal degradation of p62-ubiquitin condensates. We also show that a …


Characterization Of The Influence Of A Small Molecule Inhibitor On Ras-Related Proteins Interactions, Emilio Duverna May 2022

Characterization Of The Influence Of A Small Molecule Inhibitor On Ras-Related Proteins Interactions, Emilio Duverna

Graduate Theses and Dissertations

The Ras superfamily of small G proteins are involved in cell-signaling processes that, if not regulated, may lead to cell multiplication, apoptosis inhibition, and tumorigenesis. They function as molecular switches, which through GTP/GDP exchange cycle, switch on or off cellular activities. Overexpression and/or hyperactivity of these proteins have been linked to many diseases including various cancers. CDC42, a member of the Rho subfamily of the Ras superfamily of small G proteins, participates in the regulation of many cellular processes including cell adhesion, mitosis, and cytoskeletal rearrangements. CDC42 binds to and activates many effector proteins including CDC42-activated kinase (ACK). Abnormal activities …


Ultrasound 96 Probe Device Protocol For Cancer Cell Treatment, Aisling Field, Brijesh K. Tiwari, James F. Curtin, Julie R M Mondala, Janith Wanigasekara Jan 2022

Ultrasound 96 Probe Device Protocol For Cancer Cell Treatment, Aisling Field, Brijesh K. Tiwari, James F. Curtin, Julie R M Mondala, Janith Wanigasekara

Articles

Ultrasound is a sound wave with frequencies ranging between 20 kHz and 20 MHz. Ultrasound is able to temporarily and repeatedly open the BBB safely and enhance chemotherapeutic delivery without adverse effects. This novel technique in drug delivery benefits from the powerful ability of ultrasound to produce cavitation activity. Cavitation is the generation and activity of gas-filled bubbles in a medium exposed to ultrasound. As the pressure wave passes through the media, gas bubbles expand at low pressure and contract at high pressure. This leads to oscillation which produces a circulating fluid flow known as microstreaming around the bubble with …


Inhibition Of De Novo And The Prion-Like Spread Of Amyloidogenesis Using In Vitro And In Vivo Disease Models, Johnson Anazoba Joseph Jan 2022

Inhibition Of De Novo And The Prion-Like Spread Of Amyloidogenesis Using In Vitro And In Vivo Disease Models, Johnson Anazoba Joseph

Electronic Theses and Dissertations

The aberrant fibrous, extracellular, and intracellular proteinaceous deposits in cells, organs and tissues are referred to as amyloids. These deposits are dominated by β-sheet structures that have been implicated in several neurodegenerative diseases and cancer. In this work, the types of amyloidosis studied include Parkinson’s disease (PD) using UA196 and NL5901 strains of Caenorhabditis elegans (C. elegans), Alzheimer’s disease (AD) using GMC101 strain of C. elegans, and cancer-associated mutant p53 aggregation in MIA PaCa-2 mutant cells. Several molecules including SK-129, NS132, NS163, bexarotene, a polyphenol (-)-epi-gallocatechine gallate (EGCG), ADH40, RD148, and RD242 were screened in vitro and in …


Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari Dec 2021

Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari

Theses & Dissertations

Replicative DNA polymerases ε (Polε) and δ (Polδ) achieve high fidelity DNA synthesis through a precise balance of polymerization and exonucleolytic proofreading. Errors that escape proofreading are corrected by DNA mismatch repair (MMR). Ultramutated human cancers with proficient MMR carry alterations in the exonuclease domain of Polε, which were initially predicted to abolish proofreading. However, functional studies in yeast of the most recurrent Polε-P286R variant suggested defects beyond a loss of exonuclease activity. Indeed, biochemical analysis of the yeast Polε-P286R analog revealed increased polymerization capacity in addition to decreased proofreading, which enables efficient mismatch extension and bypass of replication-blocking non-B …


Converging Technologies: Targeting The Hallmarks Of Cancer Using Ultrasound And Microbubbles, Janith Wanigasekara, Andressa Maria Aguiar De Carvalho, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin Oct 2021

Converging Technologies: Targeting The Hallmarks Of Cancer Using Ultrasound And Microbubbles, Janith Wanigasekara, Andressa Maria Aguiar De Carvalho, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin

Articles

Various complex biological effects occur when ultrasonic compression waves travel through biological material. The myriad of biological outcomes instigated by ultrasound are evident when viewed through the lens of the hallmarks of cancer. Herein, we summarise the therapeutic potential of ultrasound, enhanced by microbubbles, for the treatment of cancer.


The Effect Of Cadmium On Ovarian Adenocarcinoma Cell Lines: An Investigation Of The Possible Mechanism Of Action, Haley Todd Apr 2021

The Effect Of Cadmium On Ovarian Adenocarcinoma Cell Lines: An Investigation Of The Possible Mechanism Of Action, Haley Todd

Undergraduate Theses

Cadmium, a heavy metal and carcinogen, is an environmental and workplace contaminate. As a known endocrine disruptor, it can mimic the proliferative effects of estrogen and is classified as a metalloestrogen. While the proliferative effect of estrogen on cancerous cell growth has been well established, the effects of cadmium have not been fully examined. To determine if cadmium stimulates growth in two human ovarian adenocarcinoma cell lines, OVCAR3 and SKOV3, cells were treated for 48 hours with varying concentrations of cadmium, 0.001 µM – 10 µM, and growth was measured using a cell proliferation assay. Both cell lines showed a …


Biophysical Characterization Of The Par-4 Tumor Suppressor: Evidence Of Structure Outside The Coiled Coil Domain And Interactions With Platinum Chemotherapeutics, Andrea Megan Clark Apr 2021

Biophysical Characterization Of The Par-4 Tumor Suppressor: Evidence Of Structure Outside The Coiled Coil Domain And Interactions With Platinum Chemotherapeutics, Andrea Megan Clark

Chemistry & Biochemistry Theses & Dissertations

Prostate apoptosis response-4 (Par-4) is an apoptosis-inducing tumor suppressor protein. Full-length Par-4 has previously been shown to be a predominantly intrinsically disordered protein (IDP) under neutral conditions, with significant regular secondary structure evident only within the C-terminal coiled coil domain. However, IDPs can gain ordered structure through the process of induced folding, which often occurs under non-neutral conditions. Previous work has shown that the Par-4 leucine zipper, which is a subset of the C-terminal coiled coil domain, is disordered under neutral conditions, but forms a dimeric coiled coil at acidic pH. Increase in ionic strength was also shown to increase …


Improvement In 14-3-3 Binding Site Prediction, Katherine K. Mccormack Jan 2021

Improvement In 14-3-3 Binding Site Prediction, Katherine K. Mccormack

ScholarsArchive Data

The 14-3-3 family of phospho-binding proteins regulate a variety of major cellular processes through interaction with a network of dynamic proteins. Deregulation of the 14-3-3 interaction network contributes to a variety of degenerative disorders and cancers. Our lab focuses on identifying novel 14-3-3 interactions and understanding how 14-3-3 binding regulates protein function. A major gap in this process is that identifying the phospho-site where 14-3-3 docks on a given protein is time- and resource-consuming. Prediction algorithms have been developed to predict canonical 14-3-3 binding sites, however, there are many non-canonical sites that existing software is unable to predict. To fill …


Understanding The Epigenetic Role Of 8-Oxoguanine And Ogg1 In Non-Small Cell Lung Cancer, Kyrellos Ibrahim Jan 2021

Understanding The Epigenetic Role Of 8-Oxoguanine And Ogg1 In Non-Small Cell Lung Cancer, Kyrellos Ibrahim

CMC Senior Theses

Oxidative damage to the genome can form 8-oxoguanine (oxoG), a premutagenic lesion suggested to play an epigenetic role in the regulation of various cellular pathways. Alongside oxoG in this regulation is the 8-oxoguanine DNA glycosylase (OGG1), which primarily functions to repair oxoG damage via base excision repair, but is also implicated in recruiting NFκB and impacting gene expression associated with cancer growth. This proposal aims to build genome-wide maps of oxoG occupancy, and indirectly OGG1 localization, in healthy lung cells and in non-small cell lung cancer adenocarcinoma cells in order to identify regulatory regions in the genome at which oxoG …


Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant Jan 2021

Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant

Honors Theses

Laromustine is an experimental chemotherapeutic sulfonyl hydrazine prodrug shown in clinical trials to be effective against acute myeloid leukemia. The mechanism of action of laromustine involves interstrand crosslinking, via chloroethylation, and enzyme inhibition, caused by carbamoylation. The work described herein aims to investigate whether inhibition of the replication-dependent interstrand crosslink repair Fanconi Anemia pathway further sensitizes cells to laromustine. By measuring metabolic activity immediately after drug exposure, we find laromustine to be equally as cytotoxic towards Fanconi Anemia deficient and wild type cells. However, through clonogenic assays we show Fanconi Anemia mutations sensitize cells to laromustine’s anti-proliferative effect. Furthermore, we …


Sestrins: Emerging Dynamic Stress-Sensors In Metabolic And Environmental Health, Seung Hyun Ro, Julianne Fay, Cesar I. Cyuzuzo, Yura Jang, Naeun Lee, Hyun Seob Song, Edward N. Harris Dec 2020

Sestrins: Emerging Dynamic Stress-Sensors In Metabolic And Environmental Health, Seung Hyun Ro, Julianne Fay, Cesar I. Cyuzuzo, Yura Jang, Naeun Lee, Hyun Seob Song, Edward N. Harris

Department of Biochemistry: Faculty Publications

Proper timely management of various external and internal stresses is critical for metabolic and redox homeostasis in mammals. In particular, dysregulation of mechanistic target of rapamycin complex (mTORC) triggered from metabolic stress and accumulation of reactive oxygen species (ROS) generated from environmental and genotoxic stress are well-known culprits leading to chronic metabolic disease conditions in humans. Sestrins are one of the metabolic and environmental stress-responsive groups of proteins, which solely have the ability to regulate both mTORC activity and ROS levels in cells, tissues and organs. While Sestrins are originally reported as one of several p53 target genes, recent studies …


Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz May 2020

Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz

Honors Theses

Malignant breast cancers exhibit preferential metastasis to bone and lung (1). While changes in gene expression in lung-specific (LM) and bone-specific metastasis (BoM) lines derived from the MDA-MB-231 breast cancer line have been identified, few metabolic genes are differentially expressed; thus it is unknown if tissue-specific metabolic reprogramming occurs. Two hallmarks of cancer cells are an altered metabolic phenotype characterized by enhanced conversion of glucose to lactate in spite of adequate oxygen availability for complete mitochondrial oxidation of this substrate (referred to as aerobic glycolysis or the Warburg effect) and a greater dependence on glutamine. These changes in primary tumor …


Novel Cyanoximates As An Alternative In Cancer Chemotherapy, Kafayat Aderonke Yusuf May 2020

Novel Cyanoximates As An Alternative In Cancer Chemotherapy, Kafayat Aderonke Yusuf

MSU Graduate Theses

Chemotherapy is one of the most effective treatment plans for several cancer types. The recurrent side effects derived from chemotherapy agents have warranted the search for novel chemical compounds with better efficacy and minimal side effects. In line with this idea, I investigated effects of a group of newly synthesized metal based chemical compounds called cyanoximates on HeLa human cancer cells. Cyanoximates used were Pt(DECO)2, Pt(MCO)2, and Pd(DECO)2 along with the chemotherapy drug cisplatin as a positive control. I found that the metal cyanoximates reduced cell viability via apoptosis, and that Pt(DECO)2 was most …


Synthesized Tripodal Amine As Potential Anti-Cancer Therapeutic, Abigail G. Mcnamee Apr 2020

Synthesized Tripodal Amine As Potential Anti-Cancer Therapeutic, Abigail G. Mcnamee

Honors College Theses

Cancer remains a prevalent disease today. This disease may manifest itself in many different ways and affect a variety of tissues with everything from the brain to the blood. With this wide diversity of cancer types, treatment can be complicated since there is not a “one size fits all” treatment for the disease. Surgery, radiation, and chemotherapy are all options that must be weighed with their benefits and side effects. Ultimately though, there are not enough effective treatment options available for every type of cancer. This leaves many with the grim prognosis of never being cured. With this clear need …


Investigating The Toxicology Of Intramuscular Injected Cnt-Ab In Mice Followed By Microwave Hyperthermia., Conner Clark Apr 2020

Investigating The Toxicology Of Intramuscular Injected Cnt-Ab In Mice Followed By Microwave Hyperthermia., Conner Clark

Honors College Theses

The advent of carbon nanotubes (CNTs) has led to a wide range of research in various fields including cancer therapy for targeting specific localized and site-specific treatment. Carbon nanotubes bound to tumor specific antibodies (Ab) offers specific treatment for cancer cells without affecting surrounding tissue. This treatment makes use of infrared absorptive properties of nanotubes to incinerate both the nanotube and its associated tumor in vivo. We seek to affirm the initial results of CNT in cancer therapy by investigating the toxicological effect in mice injected with CNT-Ab followed by microwave hypothermia. After 1-week post-injection, mice were sacrificed followed …


Leveraging Antibodies For Positron Emission Tomography And Near-Infrared Fluorescence Imaging Of Cancer, Kimberly C. Fung Feb 2020

Leveraging Antibodies For Positron Emission Tomography And Near-Infrared Fluorescence Imaging Of Cancer, Kimberly C. Fung

Dissertations, Theses, and Capstone Projects

The high specificity and affinity of antibodies make them attractive for developing drugs to diagnose and treat cancer. The overarching goal of this work is to explore the synthesis and use of antibody-based imaging agents in preclinical models of cancer. This work can be described as two-fold. In the first part, we investigated how the use of a glycans-specific bioconjugation strategy affects Fc gamma RI binding and why it results in improved in vivo performance of immunoconjugates. To do so, we used the clinically relevant positron emission tomography (PET) imaging agent, 89Zr-DFO-pertuzumab, in mouse models of human breast cancer. …


Timing And Duration Of Folate Restriction Differentially Impacts Colon Carcinogenesis., Ali M. Fardous Jan 2020

Timing And Duration Of Folate Restriction Differentially Impacts Colon Carcinogenesis., Ali M. Fardous

Wayne State University Dissertations

Colorectal cancer (CRC) constitutes a major burden on the healthcare system as the second most commonly diagnosed cancer in the developed world. Dietary folate is considered an important modulator of colorectal cancer. Folate restriction has been implicated in increasing CRC incidence by disrupting nucleotide synthesis, Impacting DNA methylation and inducing genetic instability. Our research shows that the timing and duration of dietary folate restriction can differentially impact Colorectal cancer initiation. Acclimating mice to folate restriction for 8 weeks results in a reduced number of preneoplastic lesions compared to mice placed of folate restriction for 1 week prior to initiating the …


Ototoxicity Of Cisplatin, Pyriplatin, And Phenathriplatin In The Auditory Hybridoma Cell Line, Hei-Oc1, Alexandra Johnston Jan 2020

Ototoxicity Of Cisplatin, Pyriplatin, And Phenathriplatin In The Auditory Hybridoma Cell Line, Hei-Oc1, Alexandra Johnston

Mahurin Honors College Capstone Experience/Thesis Projects

Cisplatin is an anti-cancer drug which is effective against several cancers, but also causes harmful side-effects, including ototoxicity and hearing loss. While cisplatin is a bifunctional compound that forms coordinate covalent bonds with both strands of DNA, recently investigated monofunctional platinum(II) compounds bind to only one DNA strand, and may activate different cell-death mechanisms. As several monofunctional platinum(II) compounds have anti-cancer properties, but could target different cell-death pathways, they could potentially have different and reduced side-effects. In this study, the HEI-OC1 auditory hybridoma cell line was used to investigate the ototoxicity of cisplatin and two monofunctional platinum(II) compounds, phenanthriplatin and …


A Look At Gene Control: Tracking The Ccnd1 Gene, Bryan Anders Jan 2020

A Look At Gene Control: Tracking The Ccnd1 Gene, Bryan Anders

Mahurin Honors College Capstone Experience/Thesis Projects

Cancer occurs when the cell does not properly control its own cell cycle. It then replicates in an out of control fashion leading to the death of various organs and then the demise of the organism as a whole. As it seems to have always been a problem for cell-based life, certain safeguards against cancer have been evolved over time. One such method comes in the form of prevention via cyclin proteins, which are encoded from cyclin genes. The gene that is the focus of this research is the CCND1, or cyclin D1, gene that controls the progression through various …


Exploration Of Ataxia Telangiectasia And Rad3-Related’S (Atr’S) Role In Cell Death Regulation: Implications In Development, Cancer, And Stroke, Brian Cartwright Dec 2019

Exploration Of Ataxia Telangiectasia And Rad3-Related’S (Atr’S) Role In Cell Death Regulation: Implications In Development, Cancer, And Stroke, Brian Cartwright

Electronic Theses and Dissertations

From gametogenesis until death an organism’s genome is under constant bombardment from endogenous and exogenous sources of DNA damage. To maintain genomic integrity amid this damage, cells have evolved responses which allow them to either preserve viability for recovery or initiate self-destructive pathways depending on the severity of DNA damage. One protein involved in initiating and carrying out these responses is the protein kinase ataxia telangiectasia and Rad3-related (ATR). ATR is known primarily for its regulatory role in initiating the checkpoint-signaling cascade following DNA damage and replicative stress. These signaling events lead to cell cycle arrest, DNA repair, or apoptosis …


Investigation Of Phosphoserine Aminotransferase 1(Psat1) In Breast Cancer Progression., Stephanie Metcalf Dec 2019

Investigation Of Phosphoserine Aminotransferase 1(Psat1) In Breast Cancer Progression., Stephanie Metcalf

Electronic Theses and Dissertations

This dissertation describes my research into the involvement of phosphoserine aminotransferase 1 (PSAT1) in breast cancer progression; specifically, in triple negative breast cancer (TNBC) metastasis and endocrine resistance in estrogen receptor positive breast cancer (ER+BC). Breast cancer is the most common tumor diagnosis among women. While the overall 5-year survival for breast cancer is reaching 90%, the 5-year survival for metastatic disease is only 22%. Metastasis and endocrine resistance combined can affect over 50% of patients. One of the proteins and pathways implicated in both metastasis and endocrine resistance in breast cancer is phosphoserine aminotransferase 1 (PSAT1) and the serine …