Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Cancer

Conference

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies, …


Cellular Uptake Mechanism Of Paclitaxel Nanocrystals, Iris K. Archer, Zhaohui Wang, Tonglei Li Oct 2013

Cellular Uptake Mechanism Of Paclitaxel Nanocrystals, Iris K. Archer, Zhaohui Wang, Tonglei Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Therapeutic options for metastasized human cancer in current practice remain limited and, sadly, there is no cure for metastatic cancer. The typical approach, chemotherapy, has both low efficacy due to poor drug solubility, and cytotoxic side effects to healthy tissue when delivered indiscriminately. To address both of these issues, we are pursuing the use of nanocrystal formulations of current chemotherapeutic agents as delivery platforms. Herein, we have studied cellular uptake mechanisms in cancer cells of nanocrystals of a chemotherapeutic agent, paclitaxel. Our goal in this study is to determine whether the nanocrystals can be taken up via endocytosis, especially when …