Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Consciousness As A Factor In Evolution, Kenneth A. Augustyn Jan 2020

Consciousness As A Factor In Evolution, Kenneth A. Augustyn

Michigan Tech Publications

What I call the mind began as a non-conscious robotic biochemical process control system in the very earliest forms of life. As life evolved, problems in control became more difficult and exceeded the computational capabilities of the organisms. Nature discovered a means of transcending computable physical processes resulting in non-computational subjective mental capabilities that, while still not conscious, had a degree of genuine autonomy from the physical world. These autonomous subjective wants and goals now affected the course of (but not the mechanism of) evolution. The integrated amalgam of robotic and transrobotic unconscious capabilities eventually gave rise to consciousness, which …


A Hybrid Lagrangian–Eulerian Particle Model For Ecosystem Simulation, Pengfei Xue, David J. Schwab, Xing Zhou, Chenfu Huang, Ryan Kibler, Xinyu Ye Aug 2018

A Hybrid Lagrangian–Eulerian Particle Model For Ecosystem Simulation, Pengfei Xue, David J. Schwab, Xing Zhou, Chenfu Huang, Ryan Kibler, Xinyu Ye

Michigan Tech Publications

Current numerical methods for simulating biophysical processes in aquatic environments are typically constructed in a grid-based Eulerian framework or as an individual-based model in a particle-based Lagrangian framework. Often, the biogeochemical processes and physical (hydrodynamic) processes occur at different time and space scales, and changes in biological processes do not affect the hydrodynamic conditions. Therefore, it is possible to develop an alternative strategy to grid-based approaches for linking hydrodynamic and biogeochemical models that can significantly improve computational efficiency for this type of linked biophysical model. In this work, we utilize a new technique that links hydrodynamic effects and biological processes …