Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Systems Engineering

Investigating Applications Of Deep Learning For Diagnosis Of Post Traumatic Elbow Disease, Hugh James Dec 2022

Investigating Applications Of Deep Learning For Diagnosis Of Post Traumatic Elbow Disease, Hugh James

McKelvey School of Engineering Theses & Dissertations

Traumatic events such as dislocation, breaks, and arthritis of musculoskeletal joints can cause the development of post-traumatic joint contracture (PTJC). Clinically, noninvasive techniques such as Magnetic Resonance Imaging (MRI) scans are used to analyze the disease. Such procedures require a patient to sit sedentary for long periods of time and can be expensive as well. Additionally, years of practice and experience are required for clinicians to accurately recognize the diseased anterior capsule region and make an accurate diagnosis. Manual tracing of the anterior capsule is done to help with diagnosis but is subjective and timely. As a result, there is …


Algebraic, Computational, And Data-Driven Methods For Control-Theoretic Analysis And Learning Of Ensemble Systems, Wei Miao Aug 2021

Algebraic, Computational, And Data-Driven Methods For Control-Theoretic Analysis And Learning Of Ensemble Systems, Wei Miao

McKelvey School of Engineering Theses & Dissertations

In this thesis, we study a class of problems involving a population of dynamical systems under a common control signal, namely, ensemble systems, through both control-theoretic and data-driven perspectives. These problems are stemmed from the growing need to understand and manipulate large collections of dynamical systems in emerging scientific areas such as quantum control, neuroscience, and magnetic resonance imaging. We examine fundamental control-theoretic properties such as ensemble controllability of ensemble systems and ensemble reachability of ensemble states, and propose ensemble control design approaches to devise control signals that steer ensemble systems to desired profiles. We show that these control-theoretic properties …


Elucidating And Leveraging Dynamics-Function Relationships In Neural Circuits Through Modeling And Optimal Control, Sruti Mallik Aug 2021

Elucidating And Leveraging Dynamics-Function Relationships In Neural Circuits Through Modeling And Optimal Control, Sruti Mallik

McKelvey School of Engineering Theses & Dissertations

A fundamental research question in neuroscience pertains to understanding how neural networks through their activity encode and decode information. In this research, we build on methods from theoretical domains such as control theory, dynamical systems analysis and reinforcement learning to investigate such questions. Our objective is two-fold: first, to use methods from engineering to identify specific objectives that neural circuits might be optimizing through their spatiotemporal activity patterns, and second, to draw motivation from neuroscience to formulate new engineering principles such as synthesis of dynamical networks for decentralized control applications. We specifically take a top-down, optimization driven approach in our …


Systemic Risk In Financial Networks, Tathagata Banerjee Aug 2019

Systemic Risk In Financial Networks, Tathagata Banerjee

McKelvey School of Engineering Theses & Dissertations

In this dissertation, I have used the network model based approach to study systemic risk in financial networks. In particular, I have worked on generalized extensions of the Eisenberg--Noe [2001] framework to account for realistic financial situations viz. pricing of corporate debt while accounting for network effects, asset liquidation mechanisms during fire sales, dynamic clearing and impact of contingent payments such as insurance and credit default swaps. First, I present formulas for the valuation of debt and equity of firms in a financial network under comonotonic endowments. I demonstrate that the comonotonic setting provides a lower bound to the price …


Sufficient Conditions For Optimal Control Problems With Terminal Constraints And Free Terminal Times With Applications To Aerospace, Sankalp Kishan Bhan May 2019

Sufficient Conditions For Optimal Control Problems With Terminal Constraints And Free Terminal Times With Applications To Aerospace, Sankalp Kishan Bhan

McKelvey School of Engineering Theses & Dissertations

Motivated by the flight control problem of designing control laws for a Ground Collision Avoidance System (GCAS), this thesis formulates sufficient conditions for a strong local minimum for a terminally constrained optimal control problem with a free-terminal time. The conditions develop within the framework of a construction of a field of extremals by means of the method of characteristics, a procedure for the solution of first-order linear partial differential equations, but modified to apply to the Hamilton-Jacobi-Bellman equation of optimal control. Additionally, the thesis constructs these sufficient conditions for optimality with a mathematically rigorous development. The proof uses an approach …


Robust Engineering Of Dynamic Structures In Complex Networks, Walter Botongo Bomela Aug 2018

Robust Engineering Of Dynamic Structures In Complex Networks, Walter Botongo Bomela

McKelvey School of Engineering Theses & Dissertations

Populations of nearly identical dynamical systems are ubiquitous in natural and engineered systems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust and optimal control of such large collections of dynamical units remains a grand challenge, especially, when these units interact and form a complex network. Motivated by compelling practical problems in power systems, neural engineering and quantum control, where individual units often have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization of generators in a power grid or conveying information in a neuronal network; in this dissertation, …


Extrinsic And Intrinsic Control Of Integrative Processes In Neural Systems, Anirban Nandi Dec 2017

Extrinsic And Intrinsic Control Of Integrative Processes In Neural Systems, Anirban Nandi

McKelvey School of Engineering Theses & Dissertations

At the simplest dynamical level, neurons can be understood as integrators. That is, neurons accumulate excitation from afferent neurons until, eventually, a threshold is reached and they produce a spike. Here, we consider the control of integrative processes in neural circuits in two contexts. First, we consider the problem of extrinsic neurocontrol, or modulating the spiking activity of neural circuits using stimulation, as is desired in a wide range of neural engineering applications. From a control-theoretic standpoint, such a problem presents several interesting nuances, including discontinuity in the dynamics due to the spiking process, and the technological limitations associated with …