Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

A Mathematical Programming Model For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiwan, Aldy Gunawan, Audrey Tedja Widjaja Dec 2019

A Mathematical Programming Model For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiwan, Aldy Gunawan, Audrey Tedja Widjaja

Research Collection School Of Computing and Information Systems

A green mixed fleet vehicle routing with realistic energy consumption and partial recharges problem (GMFVRP-REC-PR) is addressed in this paper. This problem involves a fixed number of electric vehicles and internal combustion vehicles to serve a set of customers. The realistic energy consumption which depends on several variables is utilized to calculate the electricity consumption of an electric vehicle and fuel consumption of an internal combustion vehicle. Partial recharging policy is included into the problem to represent the real life scenario. The objective of this problem is to minimize the total travelled distance and the total emission produced by internal …


Zac: A Zone Path Construction Approach For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Jul 2019

Zac: A Zone Path Construction Approach For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the right requests to travel in available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. The most relevant existing work has focussed on generating as many relevant feasible (with respect to available delay for customers) combinations of requests (referred to as trips) as possible in real-time. …


Entropy Based Independent Learning In Anonymous Multi-Agent Settings, Tanvi Verma, Pradeep Varakantham, Hoong Chuin Lau Jul 2019

Entropy Based Independent Learning In Anonymous Multi-Agent Settings, Tanvi Verma, Pradeep Varakantham, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Efficient sequential matching of supply and demand is a problem of interest in many online to offline services. For instance, Uber, Lyft, Grab for matching taxis to customers; Ubereats, Deliveroo, FoodPanda etc for matching restaurants to customers. In these online to offline service problems, individuals who are responsible for supply (e.g., taxi drivers, delivery bikes or delivery van drivers) earn more by being at the ”right” place at the ”right” time. We are interested in developing approaches that learn to guide individuals to be in the ”right” place at the ”right” time (to maximize revenue) in the presence of other …


Re-Org: An Online Repositioning Guidance Agent, Muralidhar Konda, Pradeep Varakantham, Aayush Saxena, Meghna Lowalekar May 2019

Re-Org: An Online Repositioning Guidance Agent, Muralidhar Konda, Pradeep Varakantham, Aayush Saxena, Meghna Lowalekar

Research Collection School Of Computing and Information Systems

No abstract provided.


Route Planning For A Fleet Of Electric Vehicles With Waiting Times At Charging Stations, Baoxiang Li, Shashi Shekhar Jha, Hoong Chuin Lau Apr 2019

Route Planning For A Fleet Of Electric Vehicles With Waiting Times At Charging Stations, Baoxiang Li, Shashi Shekhar Jha, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Electric Vehicles (EVs) are the next wave of technology in the transportation industry. EVs are increasingly becoming common for personal transport and pushing the boundaries to become the mainstream mode of transportation. Use of such EVs in logistic fleets for delivering customer goods is not far from becoming reality. However, managing such fleet of EVs bring new challenges in terms of battery capacities and charging infrastructure for efficient route planning. Researchers have addressed such issues considering different aspects of the EVs such as linear battery charging/discharging rate, fixed travel times, etc. In this paper, we address the issue of waiting …


The Capacitated Team Orienteering Problem, Aldy Gunawan, Kien Ming Ng, Vincent F. Yu, Gordy Adiprasetyo, Hoong Chuin Lau Apr 2019

The Capacitated Team Orienteering Problem, Aldy Gunawan, Kien Ming Ng, Vincent F. Yu, Gordy Adiprasetyo, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

This paper focuses on a recent variant of the Orienteering Problem (OP), namely the Capacitated Team OP (CTOP) which arises in the logistics industry. In this problem, each node is associated with a demand that needs to be satisfied and a score that need to be collected. Given a set of homogeneous fleet of vehicles, the objective is to find a path for each vehicle in order to maximize the total collected score, without violating the capacity and time budget. We propose an Iterated Local Search (ILS) algorithm for solving the CTOP. Two strategies, either accepting a new solution as …


Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau Feb 2019

Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of maritime traffic management in busy waterways to increase the safety of navigation by reducing congestion. We model maritime traffic as a large multiagent systems with individual vessels as agents, and VTS authority as the regulatory agent. We develop a maritime traffic simulator based on historical traffic data that incorporates realistic domain constraints such as uncertain and asynchronous movement of vessels. We also develop a traffic coordination approach that provides speed recommendation to vessels in different zones. We exploit the nature of collective interactions among agents to develop a scalable policy gradient approach that can scale …


Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau Feb 2019

Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of maritime traffic management in busy waterways to increase the safety of navigation by reducing congestion. We model maritime traffic as a large multiagent systems with individual vessels as agents, and VTS authority as the regulatory agent. We develop a maritime traffic simulator based on historical traffic data that incorporates realistic domain constraints such as uncertain and asynchronous movement of vessels. We also develop a traffic coordination approach that provides speed recommendation to vessels in different zones. We exploit the nature of collective interactions among agents to develop a scalable policy gradient approach that can scale …