Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 241

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Glop: Learning Global Partition And Local Construction For Solving Large-Scale Routing Problems In Real-Time, Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, Fanzhang Li Feb 2024

Glop: Learning Global Partition And Local Construction For Solving Large-Scale Routing Problems In Real-Time, Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, Fanzhang Li

Research Collection School Of Computing and Information Systems

The recent end-to-end neural solvers have shown promise for small-scale routing problems but suffered from limited real-time scaling-up performance. This paper proposes GLOP (Global and Local Optimization Policies), a unified hierarchical framework that efficiently scales toward large-scale routing problems. GLOP partitions large routing problems into Travelling Salesman Problems (TSPs) and TSPs into Shortest Hamiltonian Path Problems. For the first time, we hybridize non-autoregressive neural heuristics for coarse-grained problem partitions and autoregressive neural heuristics for fine-grained route constructions, leveraging the scalability of the former and the meticulousness of the latter. Experimental results show that GLOP achieves competitive and state-of-the-art real-time performance …


A Poisson-Based Distribution Learning Framework For Short-Term Prediction Of Food Delivery Demand Ranges, Jian Liang, Jintao Ke, Hai Wang, Hongbo Ye, Jinjun Tang Dec 2023

A Poisson-Based Distribution Learning Framework For Short-Term Prediction Of Food Delivery Demand Ranges, Jian Liang, Jintao Ke, Hai Wang, Hongbo Ye, Jinjun Tang

Research Collection School Of Computing and Information Systems

The COVID-19 pandemic has caused a dramatic change in the demand composition of restaurants and, at the same time, catalyzed on-demand food delivery (OFD) services—such as DoorDash, Grubhub, and Uber Eats—to a large extent. With massive amounts of data on customers, drivers, and merchants, OFD platforms can achieve higher efficiency with better strategic and operational decisions; these include dynamic pricing, order bundling and dispatching, and driver relocation. Some of these decisions, and especially proactive decisions in real time, rely on accurate and reliable short-term predictions of demand ranges or distributions. In this paper, we develop a Poisson-based distribution prediction (PDP) …


Constrained Multiagent Reinforcement Learning For Large Agent Population, Jiajing Ling, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar Sep 2023

Constrained Multiagent Reinforcement Learning For Large Agent Population, Jiajing Ling, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar

Research Collection School Of Computing and Information Systems

Learning control policies for a large number of agents in a decentralized setting is challenging due to partial observability, uncertainty in the environment, and scalability challenges. While several scalable multiagent RL (MARL) methods have been proposed, relatively few approaches exist for large scale constrained MARL settings. To address this, we first formulate the constrained MARL problem in a collective multiagent setting where interactions among agents are governed by the aggregate count and types of agents, and do not depend on agents’ specific identities. Second, we show that standard Lagrangian relaxation methods, which are popular for single agent RL, do not …


Generalization Through Diversity: Improving Unsupervised Environment Design, Wenjun Li, Pradeep Varakantham, Dexun Li Aug 2023

Generalization Through Diversity: Improving Unsupervised Environment Design, Wenjun Li, Pradeep Varakantham, Dexun Li

Research Collection School Of Computing and Information Systems

Agent decision making using Reinforcement Learning (RL) heavily relies on either a model or simulator of the environment (e.g., moving in an 8x8 maze with three rooms, playing Chess on an 8x8 board). Due to this dependence, small changes in the environment (e.g., positions of obstacles in the maze, size of the board) can severely affect the effectiveness of the policy learned by the agent. To that end, existing work has proposed training RL agents on an adaptive curriculum of environments (generated automatically) to improve performance on out-of-distribution (OOD) test scenarios. Specifically, existing research has employed the potential for the …


Learning To Send Reinforcements: Coordinating Multi-Agent Dynamic Police Patrol Dispatching And Rescheduling Via Reinforcement Learning, Waldy Joe, Hoong Chuin Lau Aug 2023

Learning To Send Reinforcements: Coordinating Multi-Agent Dynamic Police Patrol Dispatching And Rescheduling Via Reinforcement Learning, Waldy Joe, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of coordinating multiple agents in a dynamic police patrol scheduling via a Reinforcement Learning (RL) approach. Our approach utilizes Multi-Agent Value Function Approximation (MAVFA) with a rescheduling heuristic to learn dispatching and rescheduling policies jointly. Often, police operations are divided into multiple sectors for more effective and efficient operations. In a dynamic setting, incidents occur throughout the day across different sectors, disrupting initially-planned patrol schedules. To maximize policing effectiveness, police agents from different sectors cooperate by sending reinforcements to support one another in their incident response and even routine patrol. This poses an interesting research challenge …


Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi Jul 2023

Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi

Research Collection School Of Computing and Information Systems

Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historicalvalue models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep timeindex models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a …


Imitation Improvement Learning For Large-Scale Capacitated Vehicle Routing Problems, The Viet Bui, Tien Mai Jul 2023

Imitation Improvement Learning For Large-Scale Capacitated Vehicle Routing Problems, The Viet Bui, Tien Mai

Research Collection School Of Computing and Information Systems

Recent works using deep reinforcement learning (RL) to solve routing problems such as the capacitated vehicle routing problem (CVRP) have focused on improvement learning-based methods, which involve improving a given solution until it becomes near-optimal. Although adequate solutions can be achieved for small problem instances, their efficiency degrades for large-scale ones. In this work, we propose a newimprovement learning-based framework based on imitation learning where classical heuristics serve as experts to encourage the policy model to mimic and produce similar or better solutions. Moreover, to improve scalability, we propose Clockwise Clustering, a novel augmented framework for decomposing large-scale CVRP into …


A Hierarchical Optimization Approach For Dynamic Pickup And Delivery Problem With Lifo Constraints, Jianhui Du, Zhiqin Zhang, Xu Wang, Hoong Chuin Lau Jul 2023

A Hierarchical Optimization Approach For Dynamic Pickup And Delivery Problem With Lifo Constraints, Jianhui Du, Zhiqin Zhang, Xu Wang, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We consider a dynamic pickup and delivery problem (DPDP) where loading and unloading operations must follow a last in first out (LIFO) sequence. A fleet of vehicles will pick up orders in pickup points and deliver them to destinations. The objective is to minimize the total over-time (that is the amount of time that exceeds the committed delivery time) and total travel distance. Given the dynamics of orders and vehicles, this paper proposes a hierarchical optimization approach based on multiple intuitive yet often-neglected strategies, namely what we term as the urgent strategy, hitchhike strategy and packing-bags strategy. These multiple strategies …


A Mixed-Integer Linear Programming Reduction Of Disjoint Bilinear Programs Via Symbolic Variable Elimination, Jihwan Jeong, Scott Sanner, Akshat Kumar Jun 2023

A Mixed-Integer Linear Programming Reduction Of Disjoint Bilinear Programs Via Symbolic Variable Elimination, Jihwan Jeong, Scott Sanner, Akshat Kumar

Research Collection School Of Computing and Information Systems

A disjointly constrained bilinear program (DBLP) has various practical and industrial applications, e.g., in game theory, facility location, supply chain management, and multi-agent planning problems. Although earlier work has noted the equivalence of DBLP and mixed-integer linear programming (MILP) from an abstract theoretical perspective, a practical and exact closed-form reduction of a DBLP to a MILP has remained elusive. Such explicit reduction would allow us to leverage modern MILP solvers and techniques along with their solution optimality and anytime approximation guarantees. To this end, we provide the first constructive closed-form MILP reduction of a DBLP by extending the technique of …


A Review On Learning To Solve Combinatorial Optimisation Problems In Manufacturing, Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, Jie Zhang Mar 2023

A Review On Learning To Solve Combinatorial Optimisation Problems In Manufacturing, Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, Jie Zhang

Research Collection School Of Computing and Information Systems

An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas …


A Carbon-Aware Planning Framework For Production Scheduling In Mining, Nurual Asyikeen Azhar, Aldy Gunawan, Shih-Fen Cheng, Erwin Leonardi Sep 2022

A Carbon-Aware Planning Framework For Production Scheduling In Mining, Nurual Asyikeen Azhar, Aldy Gunawan, Shih-Fen Cheng, Erwin Leonardi

Research Collection School Of Computing and Information Systems

Managing the flow of excavated materials from a mine pit and the subsequent processing steps is the logistical challenge in mining. Mine planning needs to consider various geometric and resource constraints while maximizing the net present value (NPV) of profits over a long horizon. This mine planning problem has been modelled and solved as a precedence constrained production scheduling problem (PCPSP) using heuristics, due to its NP-hardness. However, the recent push for sustainable and carbon-aware mining practices calls for new planning approaches. In this paper, we propose an efficient temporally decomposed greedy Lagrangian relaxation (TDGLR) approach to maximize profits while …


Two-Phase Matheuristic For The Vehicle Routing Problem With Reverse Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu Sep 2022

Two-Phase Matheuristic For The Vehicle Routing Problem With Reverse Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

Cross-dockingis a useful concept used by many companies to control the product flow. It enables the transshipment process of products from suppliers to customers. This research thus extends the benefit of cross-docking with reverse logistics, since return process management has become an important field in various businesses. The vehicle routing problem in a distribution network is considered to be an integrated model, namely the vehicle routing problem with reverse cross-docking (VRP-RCD). This study develops a mathematical model to minimize the costs of moving products in a four-level supply chain network that involves suppliers, cross-dock, customers, and outlets. A matheuristic based …


Joint Chance-Constrained Staffing Optimization In Multi-Skill Call Centers, Tien Thanh Dam, Thuy Anh Ta, Tien Mai Aug 2022

Joint Chance-Constrained Staffing Optimization In Multi-Skill Call Centers, Tien Thanh Dam, Thuy Anh Ta, Tien Mai

Research Collection School Of Computing and Information Systems

This paper concerns the staffing optimization problem in multi-skill call centers. The objective is to find a minimal cost staffing solution while meeting a target level for the quality of service (QoS) to customers. We consider a staffing problem in which joint chance constraints are imposed on the QoS of the day. Our joint chance-constrained formulation is more rational capturing the correlation between different call types, as compared to separate chance-constrained versions considered in previous studies. We show that, in general, the probability functions in the joint-chance constraints display S-shaped curves, and the optimal solutions should belong to the concave …


Multi-Objective Evolutionary Algorithm Based On Rbf Network For Solving The Stochastic Vehicle Routing Problem, Yunyun Niu, Jie Shao, Jianhua Xiao, Wen Song, Zhiguang Cao Jul 2022

Multi-Objective Evolutionary Algorithm Based On Rbf Network For Solving The Stochastic Vehicle Routing Problem, Yunyun Niu, Jie Shao, Jianhua Xiao, Wen Song, Zhiguang Cao

Research Collection School Of Computing and Information Systems

Solving the multi-objective vehicle routing problem with stochastic demand (MO-VRPSD) is challenging due to its non-deterministic property and conflicting objectives. Most multi -objective evolutionary algorithm dealing with this problem update current population without any guidance from previous searching experience. In this paper, a multi -objective evolutionary algorithm based on artificial neural networks is proposed to tackle the MO-VRPSD. Particularly, during the evolutionary process, a radial basis function net-work (RBFN) is exploited to learn the potential knowledge of individuals, generate hypoth-esis and instantiate hypothesis. The RBFN evaluates individuals with different scores and generates new individuals with higher quality while taking into …


Officers: Operational Framework For Intelligent Crime-And-Emergency Response Scheduling, Jonathan David Chase, Siong Thye Goh, Tran Phong, Hoong Chuin Lau Jun 2022

Officers: Operational Framework For Intelligent Crime-And-Emergency Response Scheduling, Jonathan David Chase, Siong Thye Goh, Tran Phong, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

In the quest to achieve better response times in dense urban environments, law enforcement agencies are seeking AI-driven planning systems to inform their patrol strategies. In this paper, we present a framework, OFFICERS, for deployment planning that learns from historical data to generate deployment schedules on a daily basis. We accurately predict incidents using ST-ResNet, a deep learning technique that captures wide-ranging spatio-temporal dependencies, and solve a large-scale optimization problem to schedule deployment, significantly improving its scalability through a simulated annealing solver. Methodologically, our approach outperforms our previous works where prediction was done using Generative Adversarial Networks, and optimization was …


Hierarchical Value Decomposition For Effective On-Demand Ride Pooling, Hao Jiang, Pradeep Varakantham May 2022

Hierarchical Value Decomposition For Effective On-Demand Ride Pooling, Hao Jiang, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

On-demand ride-pooling (e.g., UberPool, GrabShare) services focus on serving multiple different customer requests using each vehicle, i.e., an empty or partially filled vehicle can be assigned requests from different passengers with different origins and destinations. On the other hand, in Taxi on Demand (ToD) services (e.g., UberX), one vehicle is assigned to only one request at a time. On-demand ride pooling is not only beneficial to customers (lower cost), drivers (higher revenue per trip) and aggregation companies (higher revenue), but is also of crucial importance to the environment as it reduces the number of vehicles required on the roads. Since …


Design Of A Two-Echelon Freight Distribution System In Last-Mile Logistics Considering Covering Locations And Occasional Drivers, Vincent F. Yu, Panca Jodiawan, Ming-Lu Hou, Aldy Gunawan Oct 2021

Design Of A Two-Echelon Freight Distribution System In Last-Mile Logistics Considering Covering Locations And Occasional Drivers, Vincent F. Yu, Panca Jodiawan, Ming-Lu Hou, Aldy Gunawan

Research Collection School Of Computing and Information Systems

This research addresses a new variant of the vehicle routing problem, called the two-echelon vehicle routing problem with time windows, covering options, and occasional drivers (2E-VRPTW-CO-OD). In this problem, two types of fleets are available to serve customers, city freighters and occasional drivers (ODs), while two delivery options are available to customers, home delivery and alternative delivery. For customers choosing the alternative delivery, their demands are delivered to one of the available covering locations for them to pick up. The objective of 2E-VRPTW-CO-OD is to minimize the total cost consisting of routing costs, connection costs, and compensations paid to ODs …


A Learning And Optimization Framework For Collaborative Urban Delivery Problems With Alliances, Jingfeng Yang, Hoong Chuin Lau Sep 2021

A Learning And Optimization Framework For Collaborative Urban Delivery Problems With Alliances, Jingfeng Yang, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

The emergence of e-Commerce imposes a tremendous strain on urban logistics which in turn raises concerns on environmental sustainability if not performed efficiently. While large logistics service providers (LSPs) can perform fulfillment sustainably as they operate extensive logistic networks, last-mile logistics are typically performed by small LSPs who need to form alliances to reduce delivery costs and improve efficiency, and to compete with large players. In this paper, we consider a multi-alliance multi-depot pickup and delivery problem with time windows (MAD-PDPTW) and formulate it as a mixed-integer programming (MIP) model. To cope with large-scale problem instances, we propose a two-stage …


Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau Aug 2021

Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Many real world systems involve interaction among large number of agents to achieve a common goal, for example, air traffic control. Several model-free RL algorithms have been proposed for such settings. A key limitation is that the empirical reward signal in model-free case is not very effective in addressing the multiagent credit assignment problem, which determines an agent's contribution to the team's success. This results in lower solution quality and high sample complexity. To address this, we contribute (a) an approach to learn a differentiable reward model for both continuous and discrete action setting by exploiting the collective nature of …


Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau Aug 2021

Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Many real world systems involve interaction among large number of agents to achieve a common goal, for example, air traffic control. Several model-free RL algorithms have been proposed for such settings. A key limitation is that the empirical reward signal in model-free case is not very effective in addressing the multiagent credit assignment problem, which determines an agent's contribution to the team's success. This results in lower solution quality and high sample complexity. To address this, we contribute (a) an approach to learn a differentiable reward model for both continuous and discrete action setting by exploiting the collective nature of …


An Adaptive Large Neighborhood Search For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiawan, Aldy Gunawan Jul 2021

An Adaptive Large Neighborhood Search For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiawan, Aldy Gunawan

Research Collection School Of Computing and Information Systems

This study addresses a variant of the Electric Vehicle Routing Problem with Mixed Fleet, named as the Green Mixed Fleet Vehicle Routing Problem with Realistic Energy Consumption and Partial Recharges. This problem contains three important characteristics — realistic energy consumption, partial recharging policy, and carbon emissions. An adaptive Large Neighborhood Search heuristic is developed for the problem. Experimental results show that the proposed ALNS finds optimal solutions for most small-scale benchmark instances in a significantly faster computational time compared to the performance of CPLEX solver. Moreover, it obtains high quality solutions for all medium- and large-scale instances under a reasonable …


Set Team Orienteering Problem With Time Windows, Aldy Gunawan, Vincent F. Yu, Andros Nicas Sutanto, Panca Jodiawan Jun 2021

Set Team Orienteering Problem With Time Windows, Aldy Gunawan, Vincent F. Yu, Andros Nicas Sutanto, Panca Jodiawan

Research Collection School Of Computing and Information Systems

This research introduces an extension of the Orienteering Problem (OP), known as Set Team Orienteering Problem with Time Windows (STOPTW), in which customers are first grouped into clusters. Each cluster is associated with a profit that will be collected if at least one customer within the cluster is visited. The objective is to find the best route that maximizes the total collected profit without violating time windows and time budget constraints. We propose an adaptive large neighborhood search algorithm to solve newly introduced benchmark instances. The preliminary results show the capability of the proposed algorithm to obtain good solutions within …


Coordinating Multi-Party Vehicle Routing With Location Congestion Via Iterative Best Response, Waldy Joe, Hoong Chuin Lau Jun 2021

Coordinating Multi-Party Vehicle Routing With Location Congestion Via Iterative Best Response, Waldy Joe, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

This work is motivated by a real-world problem of coordinating B2B pickup-delivery operations to shopping malls involving multiple non-collaborative Logistics Service Providers (LSPs) in a congested city where space is scarce. This problem can be categorized as a Vehicle Routing Problem with Pickup and Delivery, Time Windows and Location Congestion with multiple LSPs (or ML-VRPLC in short), and we propose a scalable, decentralized, coordinated planning approach via iterative best response. We formulate the problem as a strategic game where each LSP is a self-interested agent but is willing to participate in a coordinated planning as long as there are sufficient …


Approximate Difference Rewards For Scalable Multigent Reinforcement Learning, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau May 2021

Approximate Difference Rewards For Scalable Multigent Reinforcement Learning, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem ofmultiagent credit assignment in a large scale multiagent system. Difference rewards (DRs) are an effective tool to tackle this problem, but their exact computation is known to be challenging even for small number of agents. We propose a scalable method to compute difference rewards based on aggregate information in a multiagent system with large number of agents by exploiting the symmetry present in several practical applications. Empirical evaluation on two multiagent domains - air-traffic control and cooperative navigation, shows better solution quality than previous approaches.


A Matheuristic Algorithm For The Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu May 2021

A Matheuristic Algorithm For The Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

This paper studies the integration of the vehicle routing problem with cross-docking (VRPCD). The aim is to find a set of routes to deliver products from a set of suppliers to a set of customers through a cross-dock facility, such that the operational and transportation costs are minimized, without violating the vehicle capacity and time horizon constraints. A two-phase matheuristic based on column generation is proposed. The first phase focuses on generating a set of feasible candidate routes in both pickup and delivery processes by implementing an adaptive large neighborhood search algorithm. A set of destroy and repair operators are …


Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Jan 2021

Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line and GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the “right” requests to travel together in the “right” available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible combinations of requests (with respect to the available delay for customers) as …


Scalable Online Vetting Of Android Apps For Measuring Declared Sdk Versions And Their Consistency With Api Calls, Daoyuan Wu, Debin Gao, David Lo Jan 2021

Scalable Online Vetting Of Android Apps For Measuring Declared Sdk Versions And Their Consistency With Api Calls, Daoyuan Wu, Debin Gao, David Lo

Research Collection School Of Computing and Information Systems

Android has been the most popular smartphone system with multiple platform versions active in the market. To manage the application’s compatibility with one or more platform versions, Android allows apps to declare the supported platform SDK versions in their manifest files. In this paper, we conduct a systematic study of this modern software mechanism. Our objective is to measure the current practice of declared SDK versions (which we term as DSDK versions afterwards) in real apps, and the (in)consistency between DSDK versions and their host apps’ API calls. To successfully analyze a modern dataset of 22,687 popular apps (with an …


Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh Oct 2020

Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh

Research Collection School Of Computing and Information Systems

Traffic congestion reduces productivity of individuals by increasing time spent in traffic and also increases pollution. To reduce traffic congestion by better handling dynamic traffic patterns, recent work has focused on online traffic signal control. Typically, the objective in traffic signal control is to minimize expected delay over all vehicles given the uncertainty associated with the vehicle turn movements at intersections. In order to ensure responsiveness in decision making, a typical approach is to compute a schedule that minimizes the delay for the expected scenario of vehicle movements instead of minimizing expected delay over the feasible vehicle movement scenarios. Such …


Bus Frequency Optimization: When Waiting Time Matters In User Satisfaction, Songsong Mo, Zhifeng Bao, Baihua Zheng, Zhiyong Peng Sep 2020

Bus Frequency Optimization: When Waiting Time Matters In User Satisfaction, Songsong Mo, Zhifeng Bao, Baihua Zheng, Zhiyong Peng

Research Collection School Of Computing and Information Systems

Reorganizing bus frequency to cater for the actual travel demand can save the cost of the public transport system significantly. Many, if not all, existing studies formulate this as a bus frequency optimization problem which tries to minimize passengers’ average waiting time. However, many investigations have confirmed that the user satisfaction drops faster as the waiting time increases. Consequently, this paper studies the bus frequency optimization problem considering the user satisfaction. Specifically, for the first time to our best knowledge, we study how to schedule the buses such that the total number of passengers who could receive their bus services …


Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Sep 2020

Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the "right" requests to travel together in the "right" available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible (with respect to the available delay for customers) combinations of requests as possible …