Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas

George J. Pappas

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic …


Optimal Paths In Weighted Timed Automata, Rajeev Alur, Salvatore La Torre, George J. Pappas Mar 2012

Optimal Paths In Weighted Timed Automata, Rajeev Alur, Salvatore La Torre, George J. Pappas

George J. Pappas

We consider the optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to computing (parametric) shortest paths in a finite weighted directed graph. We call this graph a parametric sub-region graph. It refines the region graph, a standard tool for the analysis of timed automata, by adding the information which is relevant to solving the optimal-reachability problem. We present an algorithm to solve the optimal-reachability problem for weighted timed automata that takes time exponential in O(n (|δ(A)|+|wmax|)), where n …


Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas

George J. Pappas

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic …


Optimal Paths In Weighted Timed Automata, Rajeev Alur, Salvatore La Torre, George J. Pappas Mar 2012

Optimal Paths In Weighted Timed Automata, Rajeev Alur, Salvatore La Torre, George J. Pappas

George J. Pappas

We consider the optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to computing (parametric) shortest paths in a finite weighted directed graph. We call this graph a parametric sub-region graph. It refines the region graph, a standard tool for the analysis of timed automata, by adding the information which is relevant to solving the optimal-reachability problem. We present an algorithm to solve the optimal-reachability problem for weighted timed automata that takes time exponential in O(n (|δ(A)|+|wmax|)), where n …


Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas Mar 2012

Adaptive Algorithms For Coverage Control And Space Partitioning In Mobile Robotic Networks, Jerome Le Ny, George J. Pappas

George J. Pappas

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic …


Optimal Paths In Weighted Timed Automata, Rajeev Alur, Salvatore La Torre, George J. Pappas Mar 2012

Optimal Paths In Weighted Timed Automata, Rajeev Alur, Salvatore La Torre, George J. Pappas

George J. Pappas

We consider the optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to computing (parametric) shortest paths in a finite weighted directed graph. We call this graph a parametric sub-region graph. It refines the region graph, a standard tool for the analysis of timed automata, by adding the information which is relevant to solving the optimal-reachability problem. We present an algorithm to solve the optimal-reachability problem for weighted timed automata that takes time exponential in O(n (|δ(A)|+|wmax|)), where n …