Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 49

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb May 2023

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb

Masters Theses

One of the biggest challenges the clinical research industry currently faces is the accurate forecasting of patient enrollment (namely if and when a clinical trial will achieve full enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the development of new drugs, increases in duration and costs of clinical trials, and the over- or under- estimation of clinical supply. This study proposes a Machine Learning model using a Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment data points including patient age, patient gender, patient disease, investigational product, study phase, blinded …


Investigating Collaborative Explainable Ai (Cxai)/Social Forum As An Explainable Ai (Xai) Method In Autonomous Driving (Ad), Tauseef Ibne Mamun Jan 2023

Investigating Collaborative Explainable Ai (Cxai)/Social Forum As An Explainable Ai (Xai) Method In Autonomous Driving (Ad), Tauseef Ibne Mamun

Dissertations, Master's Theses and Master's Reports

Explainable AI (XAI) systems primarily focus on algorithms, integrating additional information into AI decisions and classifications to enhance user or developer comprehension of the system's behavior. These systems often incorporate untested concepts of explainability, lacking grounding in the cognitive and educational psychology literature (S. T. Mueller et al., 2021). Consequently, their effectiveness may be limited, as they may address problems that real users don't encounter or provide information that users do not seek.

In contrast, an alternative approach called Collaborative XAI (CXAI), as proposed by S. Mueller et al (2021), emphasizes generating explanations without relying solely on algorithms. CXAI centers …


Hard-Real-Time Computing Performance In A Cloud Environment, Alvin Cornelius Murphy Dec 2022

Hard-Real-Time Computing Performance In A Cloud Environment, Alvin Cornelius Murphy

Engineering Management & Systems Engineering Theses & Dissertations

The United States Department of Defense (DoD) is rapidly working with DoD Services to move from multi-year (e.g., 7-10) traditional acquisition programs to a commercial industrybased approach for software development. While commercial technologies and approaches provide an opportunity for rapid fielding of mission capabilities to pace threats, the suitability of commercial technologies to meet hard-real-time requirements within a surface combat system is unclear. This research establishes technical data to validate the effectiveness and suitability of current commercial technologies to meet the hard-real-time demands of a DoD combat management system. (Moreland Jr., 2013) conducted similar research; however, microservices, containers, and container …


Supporting The Discovery, Reuse, And Validation Of Cybersecurity Requirements At The Early Stages Of The Software Development Lifecycle, Jessica Antonia Steinmann Oct 2022

Supporting The Discovery, Reuse, And Validation Of Cybersecurity Requirements At The Early Stages Of The Software Development Lifecycle, Jessica Antonia Steinmann

Doctoral Dissertations and Master's Theses

The focus of this research is to develop an approach that enhances the elicitation and specification of reusable cybersecurity requirements. Cybersecurity has become a global concern as cyber-attacks are projected to cost damages totaling more than $10.5 trillion dollars by 2025. Cybersecurity requirements are more challenging to elicit than other requirements because they are nonfunctional requirements that requires cybersecurity expertise and knowledge of the proposed system. The goal of this research is to generate cybersecurity requirements based on knowledge acquired from requirements elicitation and analysis activities, to provide cybersecurity specifications without requiring the specialized knowledge of a cybersecurity expert, and …


Deep Learning Applications In Industrial And Systems Engineering, Winthrop Harvey Aug 2022

Deep Learning Applications In Industrial And Systems Engineering, Winthrop Harvey

Graduate Theses and Dissertations

Deep learning - the use of large neural networks to perform machine learning - has transformed the world. As the capabilities of deep models continue to grow, deep learning is becoming an increasingly valuable and practical tool for industrial engineering. With its wide applicability, deep learning can be turned to many industrial engineering tasks, including optimization, heuristic search, and functional approximation. In this dissertation, the major concepts and paradigms of deep learning are reviewed, and three industrial engineering projects applying these methods are described. The first applies a deep convolutional network to the task of absolute aerial geolocalization - the …


Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson Aug 2022

Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson

Graduate Theses and Dissertations

This research proposes problems, models, and solutions for the scheduling of space robot on-orbit servicing. We present the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots problem which considers on-orbit servicing across multiple orbits with moving tasks and moving refuelling depots. We formulate a mixed integer linear program model to optimize the routing and scheduling of robot servicers to accomplish on-orbit servicing tasks. We develop and demonstrate flexible algorithms for the creation of the model parameters and associated data sets. Our first algorithm creates the network arcs using orbital mechanics. We have also created a novel way to …


Evaluation Of Generative Models For Predicting Microstructure Geometries In Laser Powder Bed Fusion Additive Manufacturing, Andy Ramlatchan Aug 2022

Evaluation Of Generative Models For Predicting Microstructure Geometries In Laser Powder Bed Fusion Additive Manufacturing, Andy Ramlatchan

Computer Science Theses & Dissertations

In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex …


Supervised Representation Learning For Improving Prediction Performance In Medical Decision Support Applications, Phawis Thammasorn May 2022

Supervised Representation Learning For Improving Prediction Performance In Medical Decision Support Applications, Phawis Thammasorn

Graduate Theses and Dissertations

Machine learning approaches for prediction play an integral role in modern-day decision supports system. An integral part of the process is extracting interest variables or features to describe the input data. Then, the variables are utilized for training machine-learning algorithms to map from the variables to the target output. After the training, the model is validated with either validation or testing data before making predictions with a new dataset. Despite the straightforward workflow, the process relies heavily on good feature representation of data. Engineering suitable representation eases the subsequent actions and copes with many practical issues that potentially prevent the …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …


Decision-Analytic Models Using Reinforcement Learning To Inform Dynamic Sequential Decisions In Public Policy, Seyedeh Nazanin Khatami Mar 2022

Decision-Analytic Models Using Reinforcement Learning To Inform Dynamic Sequential Decisions In Public Policy, Seyedeh Nazanin Khatami

Doctoral Dissertations

We developed decision-analytic models specifically suited for long-term sequential decision-making in the context of large-scale dynamic stochastic systems, focusing on public policy investment decisions. We found that while machine learning and artificial intelligence algorithms provide the most suitable frameworks for such analyses, multiple challenges arise in its successful adaptation. We address three specific challenges in two public sectors, public health and climate policy, through the following three essays. In Essay I, we developed a reinforcement learning (RL) model to identify optimal sequence of testing and retention-in-care interventions to inform the national strategic plan “Ending the HIV Epidemic in the US”. …


Identifying Characteristics For Success Of Robotic Process Automations, Charles M. Unkrich Mar 2022

Identifying Characteristics For Success Of Robotic Process Automations, Charles M. Unkrich

Theses and Dissertations

In the pursuit of digital transformation, the Air Force creates digital airmen. Digital airmen are robotic process automations designed to eliminate the repetitive high-volume low-cognitive tasks that absorb so much of our Airmen's time. The automation product results in more time to focus on tasks that machines cannot sufficiently perform data analytics and improving the Air Force's informed decision-making. This research investigates the assessment of potential automation cases to ensure that we choose viable tasks for automation and applies multivariate analysis to determine which factors indicate successful projects. The data is insufficient to provide significant insights.


Analysis Of Generalized Artificial Intelligence Potential Through Reinforcement And Deep Reinforcement Learning Approaches, Jonathan Turner Mar 2022

Analysis Of Generalized Artificial Intelligence Potential Through Reinforcement And Deep Reinforcement Learning Approaches, Jonathan Turner

Theses and Dissertations

Artificial Intelligence is the next competitive domain; the first nation to develop human level artificial intelligence will have an impact similar to the development of the atomic bomb. To maintain the security of the United States and her people, the Department of Defense has funded research into the development of artificial intelligence and its applications. This research uses reinforcement learning and deep reinforcement learning methods as proxies for current and future artificial intelligence agents and to assess potential issues in development. Agent performance were compared across two games and one excursion: Cargo Loading, Tower of Hanoi, and Knapsack Problem, respectively. …


Approximate Dynamic Programming For An Unmanned Aerial Vehicle Routing Problem With Obstacles And Stochastic Target Arrivals, Kassie M. Gurnell Mar 2022

Approximate Dynamic Programming For An Unmanned Aerial Vehicle Routing Problem With Obstacles And Stochastic Target Arrivals, Kassie M. Gurnell

Theses and Dissertations

The United States Air Force is investing in artificial intelligence (AI) to speed analysis in efforts to modernize the use of autonomous unmanned combat aerial vehicles (AUCAVs) in strike coordination and reconnaissance (SCAR) missions. This research examines an AUCAVs ability to execute target strikes and provide reconnaissance in a SCAR mission. An orienteering problem is formulated as anMarkov decision process (MDP) model wherein a single AUCAV must optimize its target route to aid in eliminating time-sensitive targets and collect imagery of requested named areas of interest while evading surface-to-air missile (SAM) battery threats imposed as obstacles. The AUCAV adjusts its …


Team Air Combat Using Model-Based Reinforcement Learning, David A. Mottice Mar 2022

Team Air Combat Using Model-Based Reinforcement Learning, David A. Mottice

Theses and Dissertations

We formulate the first generalized air combat maneuvering problem (ACMP), called the MvN ACMP, wherein M friendly AUCAVs engage against N enemy AUCAVs, developing a Markov decision process (MDP) model to control the team of M Blue AUCAVs. The MDP model leverages a 5-degree-of-freedom aircraft state transition model and formulates a directed energy weapon capability. Instead, a model-based reinforcement learning approach is adopted wherein an approximate policy iteration algorithmic strategy is implemented to attain high-quality approximate policies relative to a high performing benchmark policy. The ADP algorithm utilizes a multi-layer neural network for the value function approximation regression mechanism. One-versus-one …


Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan Jan 2022

Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan

Doctoral Dissertations

“Applicable to most real-world decision scenarios, multiobjective optimization is an area of multicriteria decision-making that seeks to simultaneously optimize two or more conflicting objectives. In contrast to single-objective scenarios, nontrivial multiobjective optimization problems are characterized by a set of Pareto optimal solutions wherein no solution unanimously optimizes all objectives. Evolutionary algorithms have emerged as a standard approach to determine a set of these Pareto optimal solutions, from which a decision-maker can select a vetted alternative. While easy to implement and having demonstrated great efficacy, these evolutionary approaches have been criticized for their runtime complexity when dealing with many alternatives or …


Human-Machine Collaboration In Healthcare Innovation, Breeze Fenton Jan 2022

Human-Machine Collaboration In Healthcare Innovation, Breeze Fenton

Electronic Theses and Dissertations

Almost every individual has visited a healthcare institute, whether for an annual checkup, surgery, or a nursing home. Ensuring healthcare institutes are using human-machine collaboration systems correctly can improve daily operations. A maturity assessment and an implementation plan have been developed to help healthcare institutes monitor the human-machine collaboration systems. A maturity model, the Smart Maturity Model for Health Care (SMMHC), is a tool designed for maturity assessment. A four-step implementation plan was also created in this research. The implementation plan views the maturity of the institute and develops a strategy on how to improve it. The research utilized Integrated …


Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa Dec 2021

Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa

Theses and Dissertations

“Energy Trilemma” has recently received an increasing concern among policy makers. The trilemma conceptual framework is based on three main dimensions: environmental sustainability, energy equity, and energy security. Energy security reflects a nation’s capability to meet current and future energy demand. Rational energy planning is thus a fundamental aspect to articulate energy policies. The energy system is huge and complex, accordingly in order to guarantee the availability of energy supply, it is necessary to implement strategies on the consumption side. Energy modeling is a tool that helps policy makers and researchers understand the fluctuations in the energy system. Over the …


Integration Of Blockchain Technology Into Automobiles To Prevent And Study The Causes Of Accidents, John Kim Dec 2021

Integration Of Blockchain Technology Into Automobiles To Prevent And Study The Causes Of Accidents, John Kim

Electronic Theses, Projects, and Dissertations

Automobile collisions occur daily. We now live in an information-driven world, one where technology is quickly evolving. Blockchain technology can change the automotive industry, the safety of the motoring public and its surrounding environment by incorporating this vast array of information. It can place safety and efficiency at the forefront to pedestrians, public establishments, and provide public agencies with pertinent information securely and efficiently. Other industries where Blockchain technology has been effective in are as follows: supply chain management, logistics, and banking. This paper reviews some statistical information regarding automobile collisions, Blockchain technology, Smart Contracts, Smart Cities; assesses the feasibility …


Credit Assignment In Multiagent Reinforcement Learning For Large Agent Population, Arambam James Singh Aug 2021

Credit Assignment In Multiagent Reinforcement Learning For Large Agent Population, Arambam James Singh

Dissertations and Theses Collection (Open Access)

In the current age, rapid growth in sectors like finance, transportation etc., involve fast digitization of industrial processes. This creates a huge opportunity for next-generation artificial intelligence system with multiple agents operating at scale. Multiagent reinforcement learning (MARL) is the field of study that addresses problems in the multiagent systems. In this thesis, we develop and evaluate novel MARL methodologies that address the challenges in large scale multiagent system with cooperative setting. One of the key challenge in cooperative MARL is the problem of credit assignment. Many of the previous approaches to the problem relies on agent's individual trajectory which …


High-Density Parking For Autonomous Vehicles., Parag J. Siddique Aug 2021

High-Density Parking For Autonomous Vehicles., Parag J. Siddique

Electronic Theses and Dissertations

In a common parking lot, much of the space is devoted to lanes. Lanes must not be blocked for one simple reason: a blocked car might need to leave before the car that blocks it. However, the advent of autonomous vehicles gives us an opportunity to overcome this constraint, and to achieve a higher storage capacity of cars. Taking advantage of self-parking and intelligent communication systems of autonomous vehicles, we propose puzzle-based parking, a high-density design for a parking lot. We introduce a novel method of vehicle parking, which leads to maximum parking density. We then propose a heuristic method …


Cybersecurity Risk Assessment Using Graph Theoretical Anomaly Detection And Machine Learning, Goksel Kucukkaya Apr 2021

Cybersecurity Risk Assessment Using Graph Theoretical Anomaly Detection And Machine Learning, Goksel Kucukkaya

Engineering Management & Systems Engineering Theses & Dissertations

The cyber domain is a great business enabler providing many types of enterprises new opportunities such as scaling up services, obtaining customer insights, identifying end-user profiles, sharing data, and expanding to new communities. However, the cyber domain also comes with its own set of risks. Cybersecurity risk assessment helps enterprises explore these new opportunities and, at the same time, proportionately manage the risks by establishing cyber situational awareness and identifying potential consequences. Anomaly detection is a mechanism to enable situational awareness in the cyber domain. However, anomaly detection also requires one of the most extensive sets of data and features …


Scheduling Allocation And Inventory Replenishment Problems Under Uncertainty: Applications In Managing Electric Vehicle And Drone Battery Swap Stations, Amin Asadi Jan 2021

Scheduling Allocation And Inventory Replenishment Problems Under Uncertainty: Applications In Managing Electric Vehicle And Drone Battery Swap Stations, Amin Asadi

Graduate Theses and Dissertations

In this dissertation, motivated by electric vehicle (EV) and drone application growth, we propose novel optimization problems and solution techniques for managing the operations at EV and drone battery swap stations. In Chapter 2, we introduce a novel class of stochastic scheduling allocation and inventory replenishment problems (SAIRP), which determines the recharging, discharging, and replacement decisions at a swap station over time to maximize the expected total profit. We use Markov Decision Process (MDP) to model SAIRPs facing uncertain demands, varying costs, and battery degradation. Considering battery degradation is crucial as it relaxes the assumption that charging/discharging batteries do not …


Algorithm Selection Framework: A Holistic Approach To The Algorithm Selection Problem, Marc W. Chalé Mar 2020

Algorithm Selection Framework: A Holistic Approach To The Algorithm Selection Problem, Marc W. Chalé

Theses and Dissertations

A holistic approach to the algorithm selection problem is presented. The “algorithm selection framework" uses a combination of user input and meta-data to streamline the algorithm selection for any data analysis task. The framework removes the conjecture of the common trial and error strategy and generates a preference ranked list of recommended analysis techniques. The framework is performed on nine analysis problems. Each of the recommended analysis techniques are implemented on the corresponding data sets. Algorithm performance is assessed using the primary metric of recall and the secondary metric of run time. In six of the problems, the recall of …


Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay Jan 2020

Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay

Doctoral Dissertations

”Lean has become a common term and goal in organizations throughout the world. The approach of eliminating waste and continuous improvement may seem simple on the surface but can be more complex when it comes to implementation. Some firms implement lean with great success, getting complete organizational buy-in and realizing the efficiencies foundational to lean. Other organizations struggle to implement lean. Never able to get the buy-in or traction needed to really institute the sort of cultural change that is often needed to implement change. It would be beneficial to have a tool that organizations could use to assess their …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Fault Adaptive Workload Allocation For Complex Manufacturing Systems, Charlie B. Destefano May 2019

Fault Adaptive Workload Allocation For Complex Manufacturing Systems, Charlie B. Destefano

Graduate Theses and Dissertations

This research proposes novel fault adaptive workload allocation (FAWA) strategies for the health management of complex manufacturing systems. The primary goal of these strategies is to minimize maintenance costs and maximize production by strategically controlling when and where failures occur through condition-based workload allocation.

For complex systems that are capable of performing tasks a variety of different ways, such as an industrial robot arm that can move between locations using different joint angle configurations and path trajectories, each option, i.e. mission plan, will result in different degradation rates and life-expectancies. Consequently, this can make it difficult to predict when a …


Development And Initial Evaluation Of A Reinforced Cue Detection Model To Assess Situation Awareness In Commercial Aircraft Cockpits, Aysen K. Taylor Apr 2019

Development And Initial Evaluation Of A Reinforced Cue Detection Model To Assess Situation Awareness In Commercial Aircraft Cockpits, Aysen K. Taylor

Engineering Management & Systems Engineering Theses & Dissertations

Commercial transport aircraft of today vary greatly from early aircraft with regards to how the aircraft are controlled and the feedback provided from the machine to the human operator. Over time, as avionics systems became more automated, pilots had less direct control over their aircraft. Much research exists in the literature about automation issues, and several major accidents over the last twenty years spurred interest about how to maintain the benefits of automation while improving the overall human-machine interaction as the pilot is considered the last line of defense.

An important reason for maintaining or even improving overall pilot situation …


Sky Surveys Scheduling Using Reinforcement Learning, Andres Felipe Alba Hernandez Jan 2019

Sky Surveys Scheduling Using Reinforcement Learning, Andres Felipe Alba Hernandez

Graduate Research Theses & Dissertations

Modern cosmic sky surveys (e.g., CMB S4, DES, LSST) collect a complex diversity of astronomical objects. Each of class of objects presents different requirements for observation time and sensitivity. For determining the best sequence of exposures for mapping the sky systematically, conventional scheduling methods do not optimize the use of survey time and resources. Dynamic sky survey scheduling is an NP-hard problem that has been therefore treated primarily with heuristic methods. We present an alternative scheduling method based on reinforcement learning (RL) that aims to optimize the use of telescope resources for scheduling sky surveys.

We present an exploration of …


Multi Self-Adapting Particle Swarm Optimization Algorithm (Msapso)., Gerhard Koch May 2018

Multi Self-Adapting Particle Swarm Optimization Algorithm (Msapso)., Gerhard Koch

Electronic Theses and Dissertations

The performance and stability of the Particle Swarm Optimization algorithm depends on parameters that are typically tuned manually or adapted based on knowledge from empirical parameter studies. Such parameter selection is ineffectual when faced with a broad range of problem types, which often hinders the adoption of PSO to real world problems. This dissertation develops a dynamic self-optimization approach for the respective parameters (inertia weight, social and cognition). The effects of self-adaption for the optimal balance between superior performance (convergence) and the robustness (divergence) of the algorithm with regard to both simple and complex benchmark functions is investigated. This work …