Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 38

Full-Text Articles in Nuclear Engineering

A Case Study: The First Coastal Nuclear Decommissioning Project In California, Willie Aaron Quiros Dec 2019

A Case Study: The First Coastal Nuclear Decommissioning Project In California, Willie Aaron Quiros

Construction Management

San Onofre Nuclear Generating System (SONGS) is one of two nuclear power plants in California. Since the shut down in 2012, there is only one actively remaining, Diablo Canyon Nuclear Power Plant, which is set to shut down in 2024. This paper will examine the decommissioning of SONGS thus far; the first coastal nuclear decommissioning project in California’s stringent permitting process. This project was awarded as a joint venture to AECOM and Energy Solutions, both having experiencing in the field of nuclear decommissioning. This paper will outline what nuclear decommissioning challenges have been in the past; general steps of decommissioning …


Effect Of Ion Implantation On The Mechanical Properties Of The Grain And Grain Boundary Regions Of Inconel X750, Maisaa Nezar Tawfeeq Oct 2019

Effect Of Ion Implantation On The Mechanical Properties Of The Grain And Grain Boundary Regions Of Inconel X750, Maisaa Nezar Tawfeeq

Electronic Thesis and Dissertation Repository

Annulus gas spacers in CANada Deuterium Uranium (CANDU) nuclear reactors are made from the heat-treated Inconel X750 Nickel-based alloy. This alloy is designed to have high strength and creep resistance at elevated temperature. Unlike other reactor designs, the CANDU reactor has a high thermal neutron fluence, which results in an enhancement of the radiation damage and the internal production of helium and hydrogen. They are thus susceptible to microstructural instability and mechanical property degradation with time. Studies of ex-service spacers have indicated that they display intergranular embrittlement and lower ultimate tensile strength compared to nonirradiated Inconel X750. The primary degradation …


Bison Simulation-Based Identification Of Important Design Criteria For U3si2 Fuels With Composite-Monolithic Duplex Sic Cladding, Jacob A. Yingling Oct 2019

Bison Simulation-Based Identification Of Important Design Criteria For U3si2 Fuels With Composite-Monolithic Duplex Sic Cladding, Jacob A. Yingling

Theses and Dissertations

Accident Tolerant Fuels (ATF) require a combination of fuel and cladding which have comparable longevity characteristics to UO2 while improving resistance to radiological release during and after accidents. U3Si2 has been proposed for use in ATF concepts for its high uranium density and high thermal conductivity which provide improved fuel performance. However, some of U3Si2’s material properties are not well understood. One such property, thermal creep of U3Si2, is an important contributing factor to U3Si2’s viability as an ATF. No experimentally derived thermal creep model is published for U3Si2, and previous analyses of compressive thermal creep experimental data lack statistical …


Modeling The Uranium-Silicon Phase Equilibria Based On Computational And Experimental Analysis, Tashiema Lixona Ulrich Oct 2019

Modeling The Uranium-Silicon Phase Equilibria Based On Computational And Experimental Analysis, Tashiema Lixona Ulrich

Theses and Dissertations

As part of Accident tolerant fuel initiative, the uranium-silicide compound, U3Si2, is under consideration as a potential replacement for conventional uranium dioxide fuel. It is of interest as its higher uranium density of 11.3 g(U)/cm3 compared to 9.7 g(U)/cm3 for UO2 may allow use of more robust, but less neutronically economical fuel cladding. The improved uranium content would not only accommodate the neutronic penalty inherent to certain accident tolerant cladding concepts but also facilitate improved reactor performance with the potential for longer fuel cycles.

The U-Si system has been the subject of various studies that mainly focused on thermophysical properties, …


Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam Oct 2019

Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam

Theses and Dissertations

Scientists and engineers have been working for many years to develop accurate approaches to analyzing nuclear power reactors using computer codes that closely model the behavior of neutrons in a reactor core. The Monte Carlo simulation method is capable of treating complex geometries with a high level of resolution and fidelity to model neutron interactions inside a reactor core. With the requirement of accurate modeling in reactor physics and dynamics and great innovation of computer technology, Monte Carlo method is becoming an ever more powerful tool and receiving rising attention. In this study, Monte Carlo method is used to model …


Characterization And Drying Of Oxyhydroxides On Aluminum Clad Spent Nuclear Fuel, Matthew Shalloo Oct 2019

Characterization And Drying Of Oxyhydroxides On Aluminum Clad Spent Nuclear Fuel, Matthew Shalloo

Theses and Dissertations

Research reactors such as the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) employ aluminum-clad fuel elements made up of many thin plates with uranium dispersed within. In most engineering applications, aluminum is considered to have favorable corrosion characteristics. It forms a thin oxide layer [Al2O3] under atmospheric conditions that is impenetrable to oxygen thus stopping any further corrosion. However, both aluminum metal and Al2O3 react with water to form hydrous oxides which are less protective against further corrosion and form significantly thicker layers than oxidation in dry air. As a result, aluminum-clad spent nuclear fuel (ASNF) …


Enabling Mobile Neutron Detection Systems With Clyc, Matthew C. Recker Sep 2019

Enabling Mobile Neutron Detection Systems With Clyc, Matthew C. Recker

Theses and Dissertations

Cs2LiYCl6:Ce3+ (CLYC) has the desirable property of being sensitive to both gamma rays and neutrons while producing waveforms suitable for pulse shape discrimination (PSD) to determine which radiation was detected. This dissertation examines the behavior of CLYC to support its further development for mobile and portable applications. First, the feasibility of performing PSD with CLYC and an inexpensive data acquisition system was examined. This system was able to clearly distinguish both events with a figure of merit of 1.42. Next, the performance of a SiPM was compared to a traditional PMT. Analysis showed that the …


Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson Sep 2019

Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson

Theses and Dissertations

Potassium dihydrogen phosphate (KH2PO4, or commonly called KDP) crystals can be grown to large sizes and are used for many important devices (fast optical switches, frequency conversion, polarization rotation) for high powered lasers. The nonlinear optical material has a wide intrinsic transparency range. Intrinsic point defects are responsible for several short-lived absorption bands in the visible and ultraviolet regions that affect high-power pulsed laser propagation. The primary intrinsic defects have been experimentally detected in KDP using electron paramagnetic resonance (EPR) experiments. The defect models established thus far include (i) self-trapped holes, (ii) oxygen vacancies, and (iii) …


Point Defects In Lithium Gallate And Gallium Oxide, Christopher A. Lenyk Aug 2019

Point Defects In Lithium Gallate And Gallium Oxide, Christopher A. Lenyk

Theses and Dissertations

Electron paramagnetic resonance (EPR), Fourier-Transform Infrared spectroscopy (FTIR), photoluminescence (PL), thermoluminescence (TL), and wavelength-dependent TL are used to identify and characterize point defects in lithium gallate and β-gallium oxide doped with Mg and Fe acceptor impurities single crystals. EPR investigations of LiGaO2 identify fundamental intrinsic cation defects lithium (VLi) and gallium (V2−Ga) vacancies. The defects’ principle g values are found through angular dependence studies and atomic-scale models for these new defects are proposed. Thermoluminescence measurements estimate the activation energy of lithium vacancies at Ea = 1.05 eV and gallium vacancies at Ea > 2 …


Experimental Investigation Of Steady-State And Transient Flow Boiling Critical Heat Flux, Soon Kyu Lee Jul 2019

Experimental Investigation Of Steady-State And Transient Flow Boiling Critical Heat Flux, Soon Kyu Lee

Nuclear Engineering ETDs

The Critical Heat Flux (CHF) causes a rapid reduction of heat transfer coefficient with a rapid increase of cladding temperature, which may induce physical failure of the heated material. Understanding CHF phenomena and reliable prediction of the boiling behavior are needed to design a heat transfer system including nuclear reactors. Due to the complex nature of CHF, it is still an active research topic of interest. With an increasing interest in Accident Tolerant Fuel (ATF), CHF of ATF is essential topic of study for the detailed design of the fuel – cladding element and for the reactor safety analysis.

In …


Implementation Of View Factor Model And Radiative Heat Transfer Model In Moose, Abdurrahman Ozturk Jul 2019

Implementation Of View Factor Model And Radiative Heat Transfer Model In Moose, Abdurrahman Ozturk

Theses and Dissertations

View factors are functions that represent the geometric relationship between surfaces. They are important parameters for radiative heat transfer calculations. View factor catalogues are available for simple geometries in the current literature. However, in the case of complicated geometry, analytical or numerical methods are needed to evaluate view factors. The Monte Carlo (MC) method is the most flexible one among numerical methods, which are used to calculate view factors, since it can be applied to any geometry.

When experimental studies are not affordable to conduct, modeling of engineering problems gains more importance. Idaho National Laboratory (INL)’s finite element framework Multiphysics …


Neutronic And Cfd-Thermal Hydraulic Analyses Of Very-Small, Long-Life, Modular (Vsllim) Reactor, Luis M. Palomino May 2019

Neutronic And Cfd-Thermal Hydraulic Analyses Of Very-Small, Long-Life, Modular (Vsllim) Reactor, Luis M. Palomino

Nuclear Engineering ETDs

Neutronic and CFD-thermal hydraulic analyses are performed of the Very-Small, Long-LIfe, and Modular (VSLLIM) nuclear reactor. This reactor was developed at the University of New Mexico’s Institute for Space and Nuclear Power Studies (UNM-ISNPS) to generate 1.0 – 10 MWth for extended periods without refueling. It offers passive operation and safety features and redundant control and would be fabricated, assembled and sealed in the factory. During nominal operation and after shutdown, the VSLLIM is cooled by natural circulation of in-vessel liquid sodium, with the aid of an in-vessel chimney and annular helically-coiled …


Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt May 2019

Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt

Arts & Sciences Electronic Theses and Dissertations

Neutron scattering experiments provide direct access to the forces experienced by nucleons in the nuclear environment. Due to the experimental difficulty of cross section measurements with neutrons, isotopically-resolved neutron scattering cross sections are sorely needed as inputs for many nuclear models. This dissertation presents the results from a campaign of isotope-specific neutron total cross section measurements on 16,18O, 58,64Ni, 112,124Sn, and 103Rh from 3-450 MeV and elastic scattering differential cross section measurements on 112,nat,124Sn at 11 and 17 MeV. Equipped with these new data and with computational improvements to the Dispersive Optical Model (DOM), we present DOM treatments of 16,18O, …


Tertiary Safety System For Nuclear Spent Fuel Pool, Jonathan Farmer, Amanda Bachmann, Taylor Adams, Eissa Altalahlah, Trina Garrett, Jillian Newmyer, Drew Shayotovich May 2019

Tertiary Safety System For Nuclear Spent Fuel Pool, Jonathan Farmer, Amanda Bachmann, Taylor Adams, Eissa Altalahlah, Trina Garrett, Jillian Newmyer, Drew Shayotovich

Chancellor’s Honors Program Projects

No abstract provided.


Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan May 2019

Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Reactor fuel rod bundles serve as the primary heat source in light water reactors (LWRs), commonly found in the aforementioned PWR plants. The fuel rod bundles’ structure consists of a collection of fuel rods put into a parallel grid configuration. The bundles also include fuel rod spacers, which hold the fuel rods in place, in accordance with the grid. Repeating structures of the fuel bundles create the meta-structure in the reactor. In other words, the grid configuration repeats until it fills the entire space of the reactor. This results in reactor fuel rods suspended in the working fluid domain, oriented …


Interrogation Of Spent Nuclear Fuel Casks Using Cosmic-Ray Muon Computed Tomography, Daniel C. Poulson Apr 2019

Interrogation Of Spent Nuclear Fuel Casks Using Cosmic-Ray Muon Computed Tomography, Daniel C. Poulson

Nuclear Engineering ETDs

Properly accounting and safeguarding spent nuclear fuel are key components in the International Atomic Energy Agency’s mission of non-proliferation. Currently, no instruments are deployed that are able to verify the spent nuclear fuel contents of dry storage casks. Cosmic-ray muons provide an ideal probe for the heavily shielded casks due to their ability to penetrate thick, dense materials. Coulombic scattering of the muons, to first order, is proportional to the Z2/A of the material; this makes it especially sensitive to actinides, such as uranium and plutonium. The combination of these traits allows muons to be used to image and verify …


Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak Apr 2019

Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak

Theses and Dissertations

High concentrations of Na2O and Al2O3 in the liquid high-level radioactive waste (HLW) stored at the Hanford Site can cause nepheline (NaAlSiO4) to precipitate in a vitrified monolithic waste form upon cooling. Nepheline phase formation removes glass- former SiO2 and -modifier Al2O3 from the immobilization matrix in greater proportion to alkalis, which can reduce glass durability and consequently increase the leach rate of radionuclides into the surrounding environment.

Current uncertainty in defining the HLW glass composition region prone to precipitating nepheline necessitates targeting a conservative waste loading, which raises operational costs by extending the liquid radioactive waste disposal mission and …


Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak Apr 2019

Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak

Theses and Dissertations

High concentrations of Na2O and Al2O3 in the liquid high-level radioactive waste (HLW) stored at the Hanford Site can cause nepheline (NaAlSiO4) to precipitate in a vitrified monolithic waste form upon cooling. Nepheline phase formation removes glass- former SiO2 and -modifier Al2O3 from the immobilization matrix in greater proportion to alkalis, which can reduce glass durability and consequently increase the leach rate of radionuclides into the surrounding environment.

Current uncertainty in defining the HLW glass composition region prone to precipitating nepheline necessitates targeting a conservative waste loading, which raises operational costs by extending the liquid radioactive waste disposal mission and …


Investigation Of The Coupled Nuclear, Thermal-Hydraulic, And Thermomechanical Response Of A Natural Circulation Research Reactor Under Severe Reactivity-Initiated Accident Transients, Darren G. Talley Mar 2019

Investigation Of The Coupled Nuclear, Thermal-Hydraulic, And Thermomechanical Response Of A Natural Circulation Research Reactor Under Severe Reactivity-Initiated Accident Transients, Darren G. Talley

Mechanical Engineering ETDs

Research reactors play an important role in higher education, scientific research, and medical radioisotope production around the world. It is thus important to ensure the safety of facility workers and the public. This work presents a new reactor transient analysis code, referred to as Razorback, which computes the coupled reactor kinetics, fuel element heat transfer, fuel element thermal expansion and thermal stress, and thermal-hydraulic response of a natural circulation research reactor. The code was developed for the evaluation of large rapid reactivity addition in research reactors, with an initial focus on the Annular Core Research Reactor (ACRR) at Sandia National …


Developing A Simulation Tool For Evaluating In-Motion Detector Systems (La-Ur-18-29139), Brian Jennings Mar 2019

Developing A Simulation Tool For Evaluating In-Motion Detector Systems (La-Ur-18-29139), Brian Jennings

Nuclear Engineering ETDs

Available simulation software lacks the ability to produce in-motion detector responses for detector systems that may be used to detect the illicit trafficking of nuclear materials. In this thesis, a simulation tool is developed that uses static measured data as a basis set for producing in-motion detector responses with the ability to vary many parameters in each simulated trial. Once the basis set is measured and loaded into the simulation tool, the user interface allows the user to enter variations to speed, source height, source-to-detector distance, background exposure rate, which source(s) are present, their relative strength and shielding configuration, and …


Development Of A Mixed-Radiation Directional Rotating Scatter Mask Detection System, Bryan V. Egner Mar 2019

Development Of A Mixed-Radiation Directional Rotating Scatter Mask Detection System, Bryan V. Egner

Theses and Dissertations

Previous work demonstrated gamma-ray directional detection through the integration of a radiation detection system and an additively manufactured rotating scatter mask (RSM). This work advances the RSM directional detection system through improvements in the system's design, validation of a new scatter mask, and the novel ability to directionally detect both neutrons and gamma rays, a desirable feature for many nuclear safeguard and counterproliferation applications. The mixed-radiation RSM system developed for this research utilized the Spartan I mask design coupled with a 1" EJ-309 liquid scintillator. A GEome-try ANd Tracking (Geant4) model is developed and quantitatively compared to experimental measurements for …


Nuclear Data Covariance Analysis Of An Energy Tuning Assembly For Simulating Nuclear Weapon Environments, Nicholas J. Quartemont Mar 2019

Nuclear Data Covariance Analysis Of An Energy Tuning Assembly For Simulating Nuclear Weapon Environments, Nicholas J. Quartemont

Theses and Dissertations

An energy tuning assembly was characterized to spectrally shape the National Ignition Facility neutron source to a notional thermonuclear and prompt fission neutron spectrum to approximate a boosted nuclear device. This research performed nuclear data covariance analysis to predict the performance of the energy tuning assembly to create the objective spectrum, assessed anticipated experimental outcomes, and determine the fission products produced in a highly enriched uranium foil in the sample cavity. Nuclear data covariance impacted the neutron fluence energy distribution by a few percent for a large energy range of the neutron fluence. Neutron flux unfolding techniques provided broad spectral …


Development Of Wireless Pebble For Packed Bed Heat Transfer Measurements And Machine Learning-Aided Accident Diagnosis For Loss Of Flow Accident (Lofa), Dongjune Chang Jan 2019

Development Of Wireless Pebble For Packed Bed Heat Transfer Measurements And Machine Learning-Aided Accident Diagnosis For Loss Of Flow Accident (Lofa), Dongjune Chang

Nuclear Engineering ETDs

In the first study, a novel wireless pebble for scale experiments is developed, and a simple heat transfer experiment is conducted to determine the difference in the local heat transfer coefficient. Based on the fact that the use of Dowtherm A between approximately 57–87 °C is an alternative to the normal use of the FliBe temperature range of 600–700°C, a new-concept wireless device in a scaled experiment is introduced. This device consists of a 63.5 mm diameter metal shell and contains a built-in customized circuit board and battery for driving temperature measurements and wireless data transfer. The circuit board used …


Application Of Machine Learning To Chf Modelling, Mingfu He Mr Jan 2019

Application Of Machine Learning To Chf Modelling, Mingfu He Mr

Nuclear Engineering ETDs

Accurate prediction of CHF is still a challenging issue in the study of boiling heat transfer. Many factors contribute to the occurrence of CHF and the various trigger mechanisms are proposed to unravel physical phenomena behind CHF. However, those mechanisms cannot cover the multiple primary factors simultaneously and even some of them still remain controversially unresolved. In light of the complexity and difficulty of CHF modelling, hereby an ensemble-learning based framework is proposed to model and predict CHF based on the databank of CHF. Some prior trials have been done for three primary aspects of dominant factors, that is, surface …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Au@Tio2 Nanocomposites Synthesized By X-Ray Radiolysis As Potential Radiosensitizers, Maria C. Molina Higgins Jan 2019

Au@Tio2 Nanocomposites Synthesized By X-Ray Radiolysis As Potential Radiosensitizers, Maria C. Molina Higgins

Theses and Dissertations

Radiosensitization is a novel targeted therapy strategy where chemical compounds are being explored to enhance the sensitivity of the tissue to the effects of ionizing radiation. Among the different radiosensitizers alternatives, nanomaterials have shown promising results by enhancing tumor injury through the production of free radicals and reactive oxygen species (ROS). In this work, Gold-supported titania (Au@TiO2) nanocomposites were synthesized through an innovative strategy using X-ray irradiation, and their potential as radiosensitizers was investigated. Radiosensitization of Au@TiO2 nanocomposites was assessed by monitoring the decomposition of Methylene Blue (MB) under X-ray irradiation in the presence of the nanomaterial. …


Compositional Analysis Of Cerium And Cesium In Rapid Setting Cement As An Immobilization Agent For Nuclear Waste, Riyadh M. Motny Jan 2019

Compositional Analysis Of Cerium And Cesium In Rapid Setting Cement As An Immobilization Agent For Nuclear Waste, Riyadh M. Motny

Theses and Dissertations

A feasibility of rapid setting cement (RSC) as an agent of immobilization for certain elements such as fission products or radioactive materials was explored. Cerium (Ce) and cesium (Cs) have been selected as a surrogate for U and/or Pu and fission products, respectively, in this study in three phases. In Phase I, RSC was evaluated for physical properties (e.g., porosity, density, pH values, etc.) using two groups methods—the cement powder at different concentrations of Ce (2 – 10 wt%) with deionized water (DIW) and artificial seawater (ASW). The results showed that the final setting time and compressive strength of RSC …


Plenum-To-Plenum Heat Transfer Characteristics Under Natural Circulation In A Scaled-Down Prismatic Modular Reactor, Salman Mohammed Alshehri Jan 2019

Plenum-To-Plenum Heat Transfer Characteristics Under Natural Circulation In A Scaled-Down Prismatic Modular Reactor, Salman Mohammed Alshehri

Doctoral Dissertations

“Gas-cooled reactor (GCR) is being developed under the Next Generation Nuclear Plant Program (NGNP) in nuclear engineering studies. As the world searches for an energy source with high energy density, clean, abundant, and storable nature to avoid global warming issues, GCR seems to be a promising solution, particularly the possibility of producing hydrogen. Studying and developing the safety analysis and GCR technologies are required for the optimum design and safety of GCR system. Multiphase Reactors Engineering and Applications Laboratory (mReal) at Missouri University of Science and Technology (S&T) has developed a natural convection heat transfer test facility with one riser …


Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren Jan 2019

Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren

Doctoral Dissertations

The Switchable Radioisotope Generator utilizes alpha-induced reactions to produce a combination of photons, neutrons, and protons with varying fluxes dependent on target materials and source geometry. The activity/strength of the secondary radiation is further controlled by manipulating the number of alpha particles that can interact with the target material(s). Analytical equations were solved to confirm secondary radiation production from target materials using average cross sections from TENDL data. TENDL and JENDL data was confirmed by analytically solving for the total alpha-induced cross sections. This information was used to produce the provisional and utility Patent No: US20190013109A1. TENDL data was then …


Electrochemical Separation Of Multivalent Species On A Liquid Bismuth Cathode In Licl-Kcl Eutectic For Used Nuclear Fuel Reprocessing, Michael Woods Jan 2019

Electrochemical Separation Of Multivalent Species On A Liquid Bismuth Cathode In Licl-Kcl Eutectic For Used Nuclear Fuel Reprocessing, Michael Woods

Theses and Dissertations

The presence of group I/II fission products (Cs-137, Sr-90, and Ba-137) within molten salt nuclear processes degrades operational efficiencies by contributing to increased radiation levels in the case of material handling processes or to loss of criticality in the case of a reactor. While methods such as zone freezing and ion exchange have been proven for the separation of these fission products in LiCl-KCl salts, they require extra equipment and processing steps. Addition of a liquid metal electrode to molten salt media, such as the electrorefiner of a pyroprocessing scheme or the salt cleaning stage of a molten salt fast …