Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nuclear Engineering

Self-Healing Of Ionomeric Polymers With Carbon Fibers From Medium-Velocity Impact And Resistive Heating, Vishnu Baba Sundaresan, Andrew Morgan, Matt Castellucci Jan 2013

Self-Healing Of Ionomeric Polymers With Carbon Fibers From Medium-Velocity Impact And Resistive Heating, Vishnu Baba Sundaresan, Andrew Morgan, Matt Castellucci

Mechanical and Nuclear Engineering Publications

Self-healing materials science has seen significant advances in the last decade. Recent efforts have demonstrated healing in polymeric materials through chemical reaction, thermal treatment, and ultraviolet irradiation. The existing technology for healing polymeric materials through the aforementioned mechanisms produces an irreversible change in the material and makes it unsuitable for subsequent healing cycles. To overcome these disadvantages, we demonstrate a new composite self-healing material made from an ionomer (Surlyn) and carbon fiber that can sustain damage from medium-velocity impact and heal from the energy of the impact. Furthermore, the carbon fiber embedded in the polymer matrix results in resistive heating …


On Applications And Limitations Of One-Dimensional Capillarity Formulations For Media With Heterogeneous Wettability, T. M. Bucher, H. Vahedi Tafreshi Jan 2013

On Applications And Limitations Of One-Dimensional Capillarity Formulations For Media With Heterogeneous Wettability, T. M. Bucher, H. Vahedi Tafreshi

Mechanical and Nuclear Engineering Publications

Force-balance-based one-dimensional algebraic formulations that are often used in characterizing the capillarity of a multi-component system (e.g., predicting capillary height rise inporous media) are discussed. It is shown that such formulations fail to provide accurate predictions when the distribution of wetting (or non-wetting) surfaces is not homogeneous. A more general mathematical formulation is suggested and used to demonstrate that for media with heterogeneous wettability, hydrophilic (or hydrophobic) surfaces clustered in groups will have less contribution to the overall capillarity of the system.