Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Nuclear Engineering

High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2006 Through September 30, 2006, Anthony Hechanova Oct 2006

High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2006 Through September 30, 2006, Anthony Hechanova

Publications (NSTD)

Hydrodynamics and thermal numerical modeling coupled with sulfur trioxide decomposition for the one channel geometry with three different channel configurations were performed. The results obtained from the numerical modeling were compared with the baseline design under the same boundary and operation conditions. The case with diamond shaped channels has the highest percentage of sulfuric acid decomposition. The baseline channel geometry has the lowest pressure drop compared with other cases.


High Temperature Heat Exchanger Project: Quarterly Progress Report April 1, 2006 Through June 30, 2006, Anthony Hechanova Aug 2006

High Temperature Heat Exchanger Project: Quarterly Progress Report April 1, 2006 Through June 30, 2006, Anthony Hechanova

Publications (NSTD)

Numerical Analyses of the Ceramatec Sulfuric Acid Decomposer. Comparisons with experiments for the Ceramatec sulfuric acid decomposer coupon with eight straight channels for four different geometries and four different flow rates were performed. All of the operation and boundary conditions for the calculations were the same as in the Ceramatec experiments. Good agreement was found. The overall pressure drop difference between calculations and experiments for most of the cases is within 10%.


Dissolution, Reactor, And Environmental Behavior Of Zro 2 -Mgo Inert Fuel Matrix Neutronic Evaluation Of Mgo-Zro2 Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Jul 2006

Dissolution, Reactor, And Environmental Behavior Of Zro 2 -Mgo Inert Fuel Matrix Neutronic Evaluation Of Mgo-Zro2 Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

In the second year of the “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project initiated and directed by UNLV, the Ben-Gurion University (BGU) group research was focused on the development of practical PWR core nuclear design fully loaded with Reactor Grade (RG) Pu fuel incorporated in fertile free matrix. The design strategy was based on the basic feasibility study results performed at BGU in the Year 1 of the project.


High Temperature Heat Exchanger Project: Quarterly Progress Report January 1, 2006 Through March 31, 2006, Anthony Hechanova Apr 2006

High Temperature Heat Exchanger Project: Quarterly Progress Report January 1, 2006 Through March 31, 2006, Anthony Hechanova

Publications (NSTD)

Quarterly Collaboration Meeting. The UNLVRF HTHX Project quarterly meeting was held in Albuquerque, NM, March 16 and 17, 2006. The purpose of the meeting was to promote collaboration and communication among the UNLV Research Foundation partners. A tour of Sandia National Laboratory was also provided that included a visit to their sulfuric acid decomposition test apparatus. There were 24 attendees from universities, national laboratories, and private industry. Collaborators discussed their research progress. The next meeting will be in July in Salt Lake City, UT.


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #6, Kamalakar Alluri, Georg F. Mauer Apr 2006

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #6, Kamalakar Alluri, Georg F. Mauer

Fuels Campaign (TRP)

Project Milestones

• Completed a systematic study seeking to arrive at an optimized plant configuration, using value engineering techniques in January 2006.

• Vision-based robot serving and automated plant safety monitoring is currently in progress.


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy Apr 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility (Sftf) Design: Quarterly Progress Report January 1-March 31, 2006, Yitung Chen, Sean Hsieh Mar 2006

Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility (Sftf) Design: Quarterly Progress Report January 1-March 31, 2006, Yitung Chen, Sean Hsieh

Separations Campaign (TRP)

The UNLV developed TRPSEMPro software package can access engineering modeling software, ASPEN Plus through its own interface. The new interface eliminates the user interaction with the complex ASPEN Plus package and also provides input and output results for analysis purpose. The current interface will keep improving on collecting multiple scenario runs and database population.

Two separation processes, acid and plutonium separations, are near completion. The unit operations were finished while some sensitive chemical data for certain species are unknown. Graduate student, Matthew Hodges, continues on finishing those processes using dummy values for those restricted variables. Once the processes complete, researchers …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems: Quarterly Progress Report (01/01/06- 03/31/06), Yitung Chen Mar 2006

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems: Quarterly Progress Report (01/01/06- 03/31/06), Yitung Chen

Transmutation Sciences Materials (TRP)

Research highlights:

• A cellular automaton model using method of global restructuring on the growth and corrosion during the formation of the passive layer has been developed.

• A stochastic model, which combines the surface growth and internal oxidation, has been developed to explain the oxidation mechanism of steels in liquid lead alloys.

• Two conference papers have been accepted and will be presented in 2006 International Congress on the Advances in Nuclear Power Plants (ICAPP '06).


Neutron Multiplicity Measurements For The Afci Program Final Quarterly Progress Report January-March 2006, Denis Beller Mar 2006

Neutron Multiplicity Measurements For The Afci Program Final Quarterly Progress Report January-March 2006, Denis Beller

Transmutation Sciences Physics (TRP)

This project was developed to test a Russian-built Neutron Multiplicity Detector System (NMDS) for measuring neutrons generated in a central target by a variety of accelerators. To assist in experiment design and evaluation, we use the most advanced high-energy radiation transport code, MCNPX, to model experiments. Experimental results are compared to computational predictions and discrepancies are investigated. Initial plans were to conduct experiments using a 70-MeV proton cyclotron at the Crocker Nuclear Laboratory at the University of California at Davis and/or a 20 to 40 MeV electron linac (linear accelerator) at the Idaho Accelerator Center (IAC) at Idaho State University …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2006 To March 2006, Kiel Steven Holliday, Thomas Hartmann, Kenneth Czerwinski Mar 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2006 To March 2006, Kiel Steven Holliday, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to …


Crystal Structure And Nano Structure Of Oxide-And Nitride Transmutation Fuel – Refinement Of Transmutation Fuel Processing For Surrogate And Radioactive Fuel Systems: Quarterly Report, January 2006 To March 2006, Chinthaka Silva Mar 2006

Crystal Structure And Nano Structure Of Oxide-And Nitride Transmutation Fuel – Refinement Of Transmutation Fuel Processing For Surrogate And Radioactive Fuel Systems: Quarterly Report, January 2006 To March 2006, Chinthaka Silva

Fuels Campaign (TRP)

Transmutation-related research work at the National Laboratories, e.g. Los Alamos National Laboratory, is focused on mono-nitride ceramic fuel forms, and consists of closely coordinated “hot” actinide and “cold” inert and surrogate fuels work. Matrix and surrogate materials work involves three major components: (1) fuel matrix synthesis and fabrication, (2) fuel performance, and (3) fuel materials modeling. The synthesis and fabrication component supports basic material studies, as well as actinide fuel fabrication work through fuel fabrication process development.

This project, task 28, supports the TRP program by delivering structural data on surrogate and radioactive fuels. Crystal structure and nanostructures of the …


High Temperature Heat Exchanger Project: Quarterly Progress Report October 1, 2005 Through December 31, 2005, Anthony Hechanova Jan 2006

High Temperature Heat Exchanger Project: Quarterly Progress Report October 1, 2005 Through December 31, 2005, Anthony Hechanova

Publications (NSTD)

  • Liquid Salt Technical Working Group Meeting. The first meeting of the Liquid Salt Technical Working Group was held on October 28, 2005 at the Pratt Whitney Rocketdyne facility in Canoga Park, CA. 20 experts from academia, industry, and national laboratories participated to discuss current state of knowledge and research needs for high temperature liquid salt applications.
  • Nuclear Hydrogen Initiative Semi-annual Review. Several participants from the UNLVRF University Consortium gave technical presentations at the NHI Semi-annual Review meeting in Rockville, MD, November 9-10, 2005.
  • Quarterly Collaboration Meeting. The University of Nevada, Las Vegas hosted a UNLVRF HTHX Project quarterly meeting December …


Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility (Sftf) Design, Yitung Chen, Sean Hsieh Jan 2006

Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility (Sftf) Design, Yitung Chen, Sean Hsieh

Separations Campaign (TRP)

The overall goal of this project is the creation of a framework that combines all the strengths of AMUSE’s complicated calculations, well-established commercial system process packages, and TRPSEMPro’s flexible parameter optimization modules. Development of the process simulation code can be done using the solvent extraction process at Argonne National Laboratory in collaboration with the UNLV Nevada Center for Advanced Computational Methods.

The major objectives are the following:

  • Develop a framework for simulating the Spent Fuel Treatment Facility (SFTF) process using AMUSE code, commercial process package, such as ASPEN-PLUS, and system engineering model.
  • Develop a middleware package that can communicate between …


Neutron Multiplicity Measurements Of Target/Blanket Materials, Denis Beller Jan 2006

Neutron Multiplicity Measurements Of Target/Blanket Materials, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator-driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause nuclear reactions in subcritical systems.

To design these systems, complex reactor physics computer codes and highly detailed data libraries are used to compute the reactivity of systems, reaction rates, destruction rates, …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Yingtao Jiang, Bingmei Fu Jan 2006

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Yingtao Jiang, Bingmei Fu

Transmutation Sciences Materials (TRP)

The research objectives of this project were as follows:

  • To generate calibration curves of voltage versus oxygen concentration for the YSZ oxygen sensor system under various temperatures in liquid LBE.
  • To determine the sensor characteristics of the YSZ sensor system.
  • To determine oxygen dissolving rates in LBE under different temperatures in vitro.
  • To study the effects of unwanted electrical conductivity, contributed by the mobility of the electrons at high temperatures, for more accurate oxygen measurement.
  • To study alternative and promising oxygen measuring methods.


Corrosion Mechanisms And Kinetics Of Steels In Lead-Bismuth Eutectic: Quaterly Report, Allen L. Johnson, John Farley Jan 2006

Corrosion Mechanisms And Kinetics Of Steels In Lead-Bismuth Eutectic: Quaterly Report, Allen L. Johnson, John Farley

Transmutation Sciences Materials (TRP)

A large number of studies of corroded samples were conducted using SEM, XPS, probe, and the TEM. Samples from the DELTA loop at LANL and from other sources were examined. Also, the investigation of 316 class stainless steel in LBE is continuing.

Corroded samples of D-9 steel have been in the process of being studies, which is a variant of 316 stainless steel that is optimized for resistance to swelling. The D-9 samples are notable for the process in which a localized failure of the protective oxide layer becomes widespread corrosion. The research group is examining the D-9 samples using …


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson, Dale L. Perry Jan 2006

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

Advanced nuclear processes such as the transmutation of nuclear waste, fast reactors, liquid-metal-cooled reactors, and spallation neutron sources require advanced materials systems to contain them. The required structural materials must be stable in the presence of nonmoderating coolants. A prime candidate for such a coolant is Lead Bismuth Eutectic (LBE). Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. Unfortunately, LBE corrodes stainless steel.

The corrosive behaviors of structural materials in LBE are not well understood. The Russians have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is primarily focused on the evaluation of the effect of Si content on the susceptibility of modified 9Cr-1Mo-0.24V steel to stress corrosion cracking (SCC) and localized cracking in both molten lead-bismuth eutectic (LBE) and an aqueous solution of acidic pH.

Further, significant efforts are in progress to characterize the deformation mechanism of modified T91 grade steel as a function of temperature and strain rate. Simultaneously, surface analyses of the tested materials are ongoing using state-of-the-art techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Jinsuo Zhang, Huajun Chen, Jichun Li Jan 2006

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Jinsuo Zhang, Huajun Chen, Jichun Li

Transmutation Sciences Materials (TRP)

The goal of this research project is to provide a basic understanding of the protective oxide layer behaviors and to develop oxide layer growth models of steels in non-isothermal lead alloys (lead or lead-bismuth eutectic) coolant systems. Precise studies and simulations of all hydrodynamics with thermal conditions encountered in practical coolant loop systems by use of different flowing conditions in the laboratory are difficult and expensive, if not impossible. Therefore it is important and necessary to develop theoretical models to predict the protective oxide layer behaviors at the design stage of a practical lead-alloy coolant system, to properly interpret and …


Corrosion Barrier Development For Lbe Corrosion Resistance: Quarterly Report (April 2006), Biswajit Das Jan 2006

Corrosion Barrier Development For Lbe Corrosion Resistance: Quarterly Report (April 2006), Biswajit Das

Transmutation Sciences Materials (TRP)

As reported in the last quarterly report, synthesis of Cr nanowires was found to be problematic in terms of uniform coverage. Hence Ni was identified as the alternative metal to form the nanowires. The purpose of the metal nanowires is to provide structural integrity to the nanoporous alumina, as well as a second defense mechanism against corrosion by oxidizing in case the top alumina layer is compromised. Nickel was selected due to its established electrochemical synthesis procedure. While Ni can provide very good structural integrity to the porous alumina, one potential problem is its higher dissolution rate in LBE. However, …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2006

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive …


Decoupling And Disturbance Rejection Control For Target Circulation Loop, Xiuju Tan Jan 2006

Decoupling And Disturbance Rejection Control For Target Circulation Loop, Xiuju Tan

Reactor Campaign (TRP)

The primary objective is to modify the existing control algorithm of the pilot target circuit (TC-1) loop to achieve precise temperature control. Safety concerns, the alarm system, and a user-friendly design are the secondary objectives.

The decoupling and active disturbance rejection controls are the effective control scheme in this special multivariable control process to TC-1 loop.

The research objectives are:

• To identify the interacting terms between heater inputs and target temperature outputs in each zone experimentally,

• To design of decoupling and active disturbance rejection control (ADRC),

• To monitor system through internet based remote monitoring, automatic alarming and …


Magnetohydrodynamic Simulation Of Electromagnetic Pump In Tc-1, Lillian J. Ratliff Jan 2006

Magnetohydrodynamic Simulation Of Electromagnetic Pump In Tc-1, Lillian J. Ratliff

Reactor Campaign (TRP)

The pilot molten lead-bismuth target circuit (TC-1) in university of Nevada Las Vegas (UNLV) was designed for beam power of 1 MW accelerator driven system (ADS). The TC-1 is a liquid lead-bismuth eutectic (LBE) circulation loop. Circulation of the liquid alloy is driven by an annular linear induction pump (ALIP). Experimental measurements of system parameters have yielded a surprisingly low pump efficiency of less than 1%. A numerical study of the pump efficiency is being conducted to determine which operational parameters are responsible for this low efficiency and to give insight into future EM pump design. The numerical study will …


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2006

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

In this project the chemical bonding and interface formation of metal fission products with the coating materials used in TRISO fuel particles is investigated. The interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon is studied in detail. Using the SiC single crystals and TRISO coating materials as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are studied with a photoelectron spectroscopy, Auger electron spectroscopy, Inverse Photoemission, X-ray emission spectroscopy, and X-ray absorption spectroscopy. Recent additions to the experimental approach include microscopic techniques (Transmission Electron Microscopy, Scanning Tunneling Microscopy, Atomic Force Microscopy) …


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarterly Report, 2006, Clemens Heske Jan 2006

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarterly Report, 2006, Clemens Heske

Fuels Campaign (TRP)

This project is devoted to an in-depth study of the chemical and electronic impact of metal fission products on the coating layers in TRISO nuclear fuel. In particular, there is a focus on the investigation of Pd, Cs, and Ag and their interface formation with SiC and carbon-based substrates. A variety of surface and near-surface bulk sensitive probes that investigate the occupied and unoccupied electronic states of the substrate and the metal overlayer have been utilized. By a controlled and stepwise deposition of the metal overlayer, it is possible to gain substantial insight into the formation of interfaces and their …


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer Jan 2006

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer

Fuels Campaign (TRP)

The safe and effective manufacturing of actinide-bearing fuels for any transmutation strategy requires that the entire manufacturing process be contained within a shielded hot cell environment. To ensure that the fabrication process is feasible, the entire process must be designed for remote operation. The equipment must be reliable enough to perform over several decades, and also easy to maintain or repair remotely. The facility must also be designed to facilitate its own decontamination and decommissioning. In addition to these design factors, the potential viability of any fuel fabrication process will also be impacted by a number of variables, such as …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for …


Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann Jan 2006

Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann

Fuels Campaign (TRP)

Advanced Fuel Cycle Initiative research on transmutation fuels includes mono-nitride ceramic fuel forms, and consists of closely coordinated “hot” actinide and “cold” inert and surrogate fuels work. Matrix and surrogate materials work involves three major components: (1) fuel matrix synthesis and fabrication, (2) fuel performance, and (3) fuel materials modeling. The synthesis and fabrication component supports basic material studies, as well as actinide fuel fabrication work through fuel fabrication process development. Fuel performance studies are examining the tolerance of nitride-type fuel to heavy irradiation damage. The fuel materials simulation work involves both atomistic and continuum scale modeling employing first principles, …


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann Jan 2006

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann

Fuels Campaign (TRP)

A wide variety of fuel concepts are considered for advanced reactor technology including metals, metal oxides or metal nitrides as solid solutions or composite materials. Nitride fuels have appropriate properties for advanced fuels including high thermal conductivity, thermal stability, solid-state solubility of actinides, fissile metal density, and suitable neutronic properties. A drawback of nitride fuels involves their synthesis. A key parameter for preparing oxide fuels is the precipitation step in the sol-gel process. For nitride fuels, the current synthetic route is carbothermic reduction from the oxide to the nitride. This process step is based on solid phase reactions and for …


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

Various fuel cycle concepts for plutonium incineration in existing PWR loaded with Inert Matrix Fuel (IMF), in which uranium is replaced by neutron-transparent inert matrix material, are currently under investigation at BGU. Some of the studied designs include ZrO2-based IMF with annular fuel geometry and ZrO2-MgO based IMF with the relative amount of MgO varied from 30v/o to 70v/o. These concepts are analyzed via detailed three-dimensional full core simulation of existing PWR including thermal-hydraulic feedback. The whole core simulations are carried out with the SILWER code. The SILWER code, which is a part of the ELCOS …