Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2004

Discipline
Institution
Keyword
Publication

Articles 61 - 69 of 69

Full-Text Articles in Nuclear Engineering

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications: Quaterly Report, Biswajit Das Jan 2004

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications: Quaterly Report, Biswajit Das

Transmutation Sciences Materials (TRP)

During the past quarter, this project employed one graduate student and two undergraduate student researchers and made the following accomplishments :

• Acquisition of steel samples for experiments

• Design and fabrication of specialized anodization apparatus to accommodate steel samples

• Investigation of adhesiveness of aluminum on steel

• Investigation of effects of anodizing acids on steel to identify most appropriate acid and a suitable barrier material


Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain Jan 2004

Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain

Transmutation Sciences Materials (TRP)

The primary objective of this paper is to evaluate the effect of hydrogen on environment assisted cracking of candidate target materials for transmutation applications. Transmutation refers to transformation of long-lived actinides and fission products from spent nuclear fuels (SNF), and occurs when the nucleus of an atom changes because of natural radioactive decay, nuclear fission, nuclear fusion, neutron capture, or other related processes. Martensitic Alloy EP 823 was selected to be the candidate alloy for this investigation. During the initial phase, the stress corrosion cracking (SCC) behavior of this alloy was evaluated in neutral (pH: 6-7) and acidic (pH: 2-3) …


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Jan 2004

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.


Design And Evaluation Of Processes For Fuel Fabrication, Georg F. Mauer Jan 2004

Design And Evaluation Of Processes For Fuel Fabrication, Georg F. Mauer

Fuels Campaign (TRP)

The goal of this research project is to provide technical support to process designers working on the development of the fuel cycles for transmutation applications. Detailed process models are developed to better define the impact of fuel choice on the transmuter fuel cycle, including relative process losses, waste generation, and plant capital cost. These process models provide insight regarding required plant size and number of plants needed to mesh with the fuel recycling line. They also determine requirements for automation.

Manufacturing models for large-scale production in a hot cell environment are also developed. Combined, these two models allow the assessment …


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion, Clemens Heske Jan 2004

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion, Clemens Heske

Fuels Campaign (TRP)

The goal of this project is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. Furthermore, we intend to assess the chemical state of some of the metal fission products. The findings are expected to give valuable information about failure mechanisms of TRISO particles and fission product transport. Secondly, through simulating …


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 3rd Quarter Report, 2004, Clemens Heske Jan 2004

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 3rd Quarter Report, 2004, Clemens Heske

Fuels Campaign (TRP)

The goal of this project, which started in May 2004, is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress.


In detail, this project is devoted to studying the interface formation of Pd, Ag, and Cs with SiC and pyrolytic carbon. Using the TRISO coating materials and single crystal references as …


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 4th Quarter Report, 2004, Clemens Heske Jan 2004

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 4th Quarter Report, 2004, Clemens Heske

Fuels Campaign (TRP)

The goal of this project, which started in May 2004, is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. In detail, this project is devoted to studying the interface formation of Pd, Ag, and Cs with SiC and pyrolytic carbon. In order to study the properties of the relevant interfaces, …


University Of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2003-2004, Anthony Hechanova, Elizabeth Johnson, Gary Cerefice Jan 2004

University Of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2003-2004, Anthony Hechanova, Elizabeth Johnson, Gary Cerefice

Transmutation Research Program Reports (TRP)

It is my pleasure to present the UNLV Transmutation Research Program’s third annual report that highlights the academic year 2003 – 2004. Supporting this document are the many technical reports and scientific papers that have been generated over the past three years.

In the third year of our program, we experienced infrastructure growth despite a decreasing budget. This past year we continued into the final phases of the initial 16 independent student research tasks started in 2001 and 2002, supporting 45 graduate students and 11 undergraduates in 6 academic departments across the UNLV scientific and engineering communities during the academic …


Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis Jan 2004

Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis

Physics Faculty Research & Creative Works

Silica aerogels were patterned with CdS using a photolithographic technique based on local heating with infrared (IR) light. The solvent of silica hydrogels was exchanged with an aqueous solution of the precursors CdNO3 and NH4 OH, all precooled to a temperature of 5°C. Half of the bathing solution was then replaced by a thiourea solution. After thiourea diffused into the hydrogels, the samples were exposed to a focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the spots heated by the IR beam to form CdS nanoparticles. We lithographed features with a diameter of …