Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

2013

Discipline
Keyword
Publication
Publication Type

Articles 1 - 8 of 8

Full-Text Articles in Nuclear Engineering

Two-Equation Two-Fluid Model For Bubbly Flow In A Vertical Channel, Jeffrey Feliszak, Martin Bertodano Oct 2013

Two-Equation Two-Fluid Model For Bubbly Flow In A Vertical Channel, Jeffrey Feliszak, Martin Bertodano

The Summer Undergraduate Research Fellowship (SURF) Symposium

The one-dimensional two-fluid model is widely acknowledged as the most detailed and accurate macroscopic formulation of the thermo-fluid dynamics in nuclear reactor safety analysis. Several thermo-fluid dynamics codes have sprung up based on the one dimensional two-fluid model, such as RELAP5, TRAC, RETRAN, CATHARE, etc. However, these codes are quasi-steady because they lack the short wavelength models that are necessary to make the models well-posed; therefore they must rely on excessive numerical viscosity. Not utilizing short wavelength models causes small wavelength waves to grow quickly to infinity. The project objective is to develop a drafting force model for a one …


Evolution Of Laser Produced Aluminum Plasma In The Presence Of A Transverse Magnetic Field, Nicholaus Mckenna, Niral Shah, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein Oct 2013

Evolution Of Laser Produced Aluminum Plasma In The Presence Of A Transverse Magnetic Field, Nicholaus Mckenna, Niral Shah, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Surface erosion of plasma-facing components is a very important problem in fusion reactors. In order to make fusion reactors economically viable the lifetime of plasma-facing components must be extended. My research entails using magnetic field interactions with plasma in order to determine how the plasma moves through the field, and if it can be stopped by using a certain orientation of magnetic field. A magnetic field should be able to alter the path of evolving plasma due to the interaction of the magnetic field with the charged particles in the plasma. The optimal orientation for slowing the evolution of the …


Ion Beam Sputtering Yield Measurements By Quartz Crystal Microbalance, Norris W. Watkins Ii, Kaitlyn Grundy, Ahmed Hassanein, Theodore J. Novakowski, Al-Montaser Ba Al-Ajlony, Mark Catalfano, Sivanandan Harilal Oct 2013

Ion Beam Sputtering Yield Measurements By Quartz Crystal Microbalance, Norris W. Watkins Ii, Kaitlyn Grundy, Ahmed Hassanein, Theodore J. Novakowski, Al-Montaser Ba Al-Ajlony, Mark Catalfano, Sivanandan Harilal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quartz-crystal microbalance (QCM) has been used as a sensitive device for the measurement of small mass changes for a long ago. In fact, using QCM we can measure the differential sputtering yield profile of a material, over a hemisphere above the target, very precisely. The sputtering yield depends on properties of both the incident ions (energy, mass, and incidence angle) and the target (mass, surface binding energy, surface topography, and even the crystal orientation). In our present study, we used a highly sensitive QCM to detect the mass change of the electrode material (gold and silver) through oscillations and calculated …


Collimation Effects On Magnetically Confined Laser Produced Plasmas, Niral Shah, Nick Mckenna, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein Oct 2013

Collimation Effects On Magnetically Confined Laser Produced Plasmas, Niral Shah, Nick Mckenna, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Tokamaks for fusion research are extremely complex and are still limited by inherent instabilities such as material erosion from plasma instabilities. Due to the lack of data and high demand of resources, simulations to portray Tokamaks are essential. A Particle-In-Cell (PIC) simulation for plasma erosion on materials within the Tokamak is to be benchmarked using the experimental data obtained in these experiments. The effects of an axial magnetic field (magnetic field lines are along the plasma propagation direction) on an expanding laser produced plasma plume are investigated. A Continuum Surelite Nd:YAG laser system at 1064 nm wavelength and 6 ns …


The Role Of Surface Roughness On Ion Sputtering Yield Measurements, Katie Grundy, Norris W. Watkins Ii, Al-Montaser Ba Al-Ajlony, Theodore J. Novakowski, Mark Catalfano, Jitendra K. Tripathi, Sivanandan Harilal, Ahmed Hassanein Oct 2013

The Role Of Surface Roughness On Ion Sputtering Yield Measurements, Katie Grundy, Norris W. Watkins Ii, Al-Montaser Ba Al-Ajlony, Theodore J. Novakowski, Mark Catalfano, Jitendra K. Tripathi, Sivanandan Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ion sputtering is the removal of surface atoms or molecules in a solid under energetic ion irradiation. This technique is promising for its applications in material modification and characterization. Sputtering yield, the average number of atoms removed from a sample per incident ion, is a crucial parameter in material modification. In the present study, a quartz crystal microbalance was used within an ultra-high vacuum chamber (10E-8 torr) to measure the sputtering yield of gold. An NTI-1401 ion gun was used to bombard argon and helium ions onto a gold sample. The argon and helium ions used ranged in energy from …


Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco Oct 2013

Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco

Open Access Dissertations

Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m2 applied in very short periods (0.1 to 5 ms) can be …


Development Of A Multiscale Atomistic Code To Investigate Self-Organized Pattern Formation Induced By Ion Irradiation, Zhangcan Yang Oct 2013

Development Of A Multiscale Atomistic Code To Investigate Self-Organized Pattern Formation Induced By Ion Irradiation, Zhangcan Yang

Open Access Dissertations

Various self-organized patterns including ripples and quantum dots can be induced by ion beam sputtering (IBS). For the past decades, the understanding of such phenomenon has been mainly relied on the Bradley-Harper theory that attributes the formation of self-organized patterns to the interplay between roughening by curvature dependence of erosion and smoothening by surface diffusion. Recently, the development of the crater function theory has overturned this erosion-based paradigm to a redistribution-based paradigm. The theory has proved that erosion is irrelevant and negligible in the pattern formation at low and intermediate incidence angles. Despite the success, there are still some questions …


Energy, U.S. Department Of, Bert Chapman May 2013

Energy, U.S. Department Of, Bert Chapman

Libraries Faculty and Staff Scholarship and Research

Provides information about the U.S. Department of Energy (DOE) and its predecessor agencies and how DOE influences federal energy policy and scientific research in the western U.S.