Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nuclear Engineering

Cfd Validation And Scaling Of Condensation Heat Transfer, Varun Kalra Jan 2017

Cfd Validation And Scaling Of Condensation Heat Transfer, Varun Kalra

Masters Theses

"A CFD study was performed using STAR-CCM+ to validate the software for its competence in the prediction and scaling of condensation heat transfer in the presence of air acting as a non-condensable gas. Three vertical concentric tube heat exchanger geometries with different diameters were studied in the CFD analysis. It was seen that the steam bulk temperatures predicted by STAR-CCM+ closely matched the experimental data. However, the temperatures of outer wall of the steel condenser tubes showed a deviation of 2% to 11% from the experimental values. The error in adiabatic water wall temperatures were found to range from 18% …


Analysis And Implementation Of Accident Tolerant Nuclear Fuels, Benjamin Joseph Prewitt Jan 2017

Analysis And Implementation Of Accident Tolerant Nuclear Fuels, Benjamin Joseph Prewitt

Masters Theses

"To improve the reliability and robustness of LWR, accident tolerant nuclear fuels and cladding materials are being developed to possibly replace the current UO2/zirconium system. This research highlights UN and U3Si2, two of the most favorable accident tolerant fuels being developed. To evaluate the commercial feasiblilty of these fuels, two areas of research were conducted. Chemical fabrication routes for both fuels were investigated in detail, considering UO2 and UF6 as potential starting materials. Potential pathways for industrial scale fabrication using these methods were discussed.

Neutronic performance of 70%UN-30%U3Si2 composite …


A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle Jan 2017

A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle

Masters Theses

“Am241 is typically produced via Pu241 decay in a uranium fueled reactor. Presence of Am241 can be used as the age estimation tool for spent fuel, which is a focus of this thesis along with the interest of the measurement and the ratio of production rates of Am241’s activation products; Americium-242 and its first excited state of Americium-242m. MCNP models of the core and BEGe 3825 detector were built. These models were compared with established and physical measurements of gamma/x-ray standards that were available at the reactor. Thermal fluxes at 200 kW for potential foils centered in the source holder …


Comparison Of ²⁵²Cf Time Correlated Induced Fission With Amli Induced Fission On Fresh Mtr Research Reactor Fuel, Jay Prakash Joshi Jan 2017

Comparison Of ²⁵²Cf Time Correlated Induced Fission With Amli Induced Fission On Fresh Mtr Research Reactor Fuel, Jay Prakash Joshi

Masters Theses

"The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded …


The Viability Of Advantg Deterministic Method For Synthetic Radiography Generation, Andrew Albert Bingham Jan 2017

The Viability Of Advantg Deterministic Method For Synthetic Radiography Generation, Andrew Albert Bingham

Masters Theses

"Time sensitive and high resolution image simulations are needed for synthetic radiography generation. The standard stochastic approach requires lengthy run times with poor statistics at higher resolutions. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a Benchtop CT prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease over 10 times compared to the MCNP stochastic approach"--Abstract, …


Design And Analysis Of A Passive Heat Removal System For A Small Modular Reactor Using Star Ccm+, Raymond Michael Fanning Jan 2017

Design And Analysis Of A Passive Heat Removal System For A Small Modular Reactor Using Star Ccm+, Raymond Michael Fanning

Masters Theses

"Next generation nuclear power plants, specifically small modular reactor designs, are the best alternative to fossil fuels for power generation due to their power density and low carbon emissions and constant awareness of safety concerns. A promising safety feature of new designs is the removal of heat by passive systems in accident scenarios. The passive systems require no moving parts and no intervention by personnel. These systems must be accurately simulated for better understanding of the heat transport phenomena: natural convection cooling. Due to the fact that most work developing these passive heat removal systems are proprietary information, a passive …