Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 129

Full-Text Articles in Nuclear Engineering

Miniature, Submersible Electromagnetic Pumps Of Molten Lead And Sodium For Gen-Iv Nuclear Reactors Development, Ragai M. Altamimi Aug 2023

Miniature, Submersible Electromagnetic Pumps Of Molten Lead And Sodium For Gen-Iv Nuclear Reactors Development, Ragai M. Altamimi

Nuclear Engineering ETDs

Heavy metals and alkali Liquid Metals are suitable coolants for Generation IV terrestrial nuclear reactors for operating at elevated temperatures for achieving plant thermal efficiency more than 40% and the thermochemical generation of hydrogen fuel. In addition, the low vapor pressure of these liquids eliminates the need for a pressure vessel and instead operates slightly below ambient pressure. A primary issue with the uses of these coolants is their compatibility with nuclear fuel, cladding and core structure materials at elevated temperatures more than 500oC. Therefore, in pile and out-of-pile test loops have been constructed or being considered for quantifying the …


Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial May 2023

Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial

Electrical and Computer Engineering ETDs

Radionuclide spectroscopic sensor data is analyzed with minimal power consumption through the use of neuromorphic computing architectures. Memristor crossbars are harnessed as the computational substrate in this non-conventional computing platform and integrated with CMOS-based neurons to mimic the computational dynamics observed in the mammalian brain’s visual cortex. Functional prototypes using spiking sparse locally competitive approximations are presented. The architectures are evaluated for classification accuracy and energy efficiency. The proposed systems achieve a 90% true positive accuracy with a high-resolution detector and 86% with a low-resolution detector.


Numerical Investigations Of The Fluid Flow And Heat Transfer And Construction Of Control System For The Canadian Supercritical Water-Cooled Reactor Power Plant, Huirui Han Oct 2022

Numerical Investigations Of The Fluid Flow And Heat Transfer And Construction Of Control System For The Canadian Supercritical Water-Cooled Reactor Power Plant, Huirui Han

Electronic Thesis and Dissertation Repository

Canada participated in the Generation IV nuclear reactors with the Supercritical Water-Cooled Reactor (SCWR) concept. This work focuses on the numerical studies of the fluid flow and heat transfer of the supercritical water in the nuclear reactor fuel bundle, and the construction of the linear dynamic model and the design of the control system for the Canadian SCWR power plant.

Firstly, the fluid flow and heat transfer of the supercritical water in the vertical tube and the rod bundle is numerically investigated to evaluate whether the existing turbulent models could successfully caption the wall temperature variations at supercritical conditions by …


Configuration And Sizing Of Small Modular Reactor With Thermal Energy Storage Within A Microgrid For Off-Grid Communities, Michael W. C. Davis Aug 2022

Configuration And Sizing Of Small Modular Reactor With Thermal Energy Storage Within A Microgrid For Off-Grid Communities, Michael W. C. Davis

Electronic Thesis and Dissertation Repository

Many off-grid communities in Canada rely on diesel generators for their electricity needs. This is not only expensive but also produces significant greenhouse gas emissions. Small modular reactors (SMRs) have been proposed to replace diesel generators and can be combined with photovoltaic (PV) sources to form a microgrid. However, fluctuations in loads and PV create challenges for SMRs. Integrating a thermal energy storage (TES) system with the SMR can increase the flexibility of the power system to operate more effectively. This thesis first examines methodologies to determine suitable configurations of such a microgrid. Through analysis of the system components and …


Computational Models To Detect Radiation In Urban Environments: An Application Of Signal Processing Techniques And Neural Networks To Radiation Data Analysis, Jose Nicolas Gachancipa Jul 2022

Computational Models To Detect Radiation In Urban Environments: An Application Of Signal Processing Techniques And Neural Networks To Radiation Data Analysis, Jose Nicolas Gachancipa

Beyond: Undergraduate Research Journal

Radioactive sources, such as uranium-235, are nuclides that emit ionizing radiation, and which can be used to build nuclear weapons. In public areas, the presence of a radioactive nuclide can present a risk to the population, and therefore, it is imperative that threats are identified by radiological search and response teams in a timely and effective manner. In urban environments, such as densely populated cities, radioactive sources may be more difficult to detect, since background radiation produced by surrounding objects and structures (e.g., buildings, cars) can hinder the effective detection of unnatural radioactive material. This article presents a computational model …


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals May 2022

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent …


Phase Change Temperature Sensor For High Radiation Environment: Material, Additive Technology And Structure Development, Al Amin Ahmed Simon Aug 2021

Phase Change Temperature Sensor For High Radiation Environment: Material, Additive Technology And Structure Development, Al Amin Ahmed Simon

Boise State University Theses and Dissertations

Performance of any sensor in a nuclear reactor involves reliable operation under a harsh environment (i.e., high temperature, neutron irradiation, and a high dose of ionizing radiation). In this environment, accurate and continuous monitoring of temperature is critical for the reactor's stability and proper functionality. Furthermore, during the development and testing stages of new materials and structural components for these systems, it is imperative to collect in-situ measurement data about the exact test conditions for real-time analysis of their performance. To meet the compelling need of such sensing devices, we propose radiation-hard temperature sensors based on the phase change phenomenon …


Enercon Station Vacuum Pump Replacement, Clint Hembree, Jared D'Amico, Connor Moore, Paul Jeffrey Fontenot, Sydnee Castello, J.J. Clements Apr 2021

Enercon Station Vacuum Pump Replacement, Clint Hembree, Jared D'Amico, Connor Moore, Paul Jeffrey Fontenot, Sydnee Castello, J.J. Clements

Senior Design Project For Engineers

This details the progress of the ENERCON pump replacement project as completed by the Kennesaw State University interdisciplinary senior design group. This project is a two-semester capstone effort for the engineering program at Southern Polytechnic School of Engineering, overseen by Dr. McFall during Fall 2020 and Dr. Khalid during Spring 2021 semesters. The 2020-2021 KSU Interdisciplinary Senior Design team was tasked with completing an Engineering Change Package (ECP) for existing vacuum pumps at ENERCON Station. The mechanical, electrical, and civil students worked together, performing evaluations on existing plant systems to ensure the plant could support the new vacuum pumps. By …


Inverted Geometry Ceramic Insulators In High Voltage Dc Electron Guns For Accelerators, C. Hernandez-Garcia, G. Palacios-Serrano, P. Adderley, D. Bullard, J. Grames, Md. Abdullah Mamun, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, S.A.K. Wijethunga Jan 2021

Inverted Geometry Ceramic Insulators In High Voltage Dc Electron Guns For Accelerators, C. Hernandez-Garcia, G. Palacios-Serrano, P. Adderley, D. Bullard, J. Grames, Md. Abdullah Mamun, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, S.A.K. Wijethunga

Physics Faculty Publications

A direct current (dc) high voltage photo-emission electron gun operating at 130 kV is utilized at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility to generate spin-polarized electrons for nuclear physics experiments. Over the past decade, JLab has tested and implemented inverted-geometry ceramic insulators in photoguns, connecting the cathode electrode in vacuum to the high voltage power supply using commercial high voltage cables. The results of those tests showed that breakdown voltage was increased using triple-point shielding electrodes and bulk-doped insulators that allow charge drainage. This contribution describes ongoing work to develop a robust insulatorcable connector for reliably applying …


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, …


Neutron Displacement Damage In Germanium Tin Photodiodes, Nathan J. Gale Mar 2020

Neutron Displacement Damage In Germanium Tin Photodiodes, Nathan J. Gale

Theses and Dissertations

GeSn is a promising material for photodiodes in the near-to-mid infrared (IR) spectrum because of new growth methods that enable integration with complementary metal oxide semiconductor (CMOS) technology. While natural germanium has a threshold wavelength of 1800 nm, 6.9 Sn content extends the threshold wavelength to 2700 nm based on a Sn content dependent bandgap. Also, unlike other semiconductors that require liquid nitrogen cooling to act as an IR sensor, GeSn can be operated at room temperature, enabling a wide variety of applications. In this study, photodiodes ranging from 0 to 6.9 tin content were subjected to 1 MeV (Si) …


Holt (Maria) Papers, 1962-2016, Special Collections, Raymond H. Fogler Library, University Of Maine Jan 2019

Holt (Maria) Papers, 1962-2016, Special Collections, Raymond H. Fogler Library, University Of Maine

Finding Aids

Born and raised in Farmington, Maria Glen Holt studied nursing at Cornell University in New York. She worked many years as a public health nurse. Maria married Dr. Alfred Holt and the couple moved to Bath when Dr. Holt transferred his practice there. Maria served two terms as a State Representative and ultimately became an environmental activist, fighting against construction of Maine Yankee Nuclear Power Plant in Wiscasset, Maine. In 2017, Maria co-authored the book, The Death of Maine Yankee: Antinuclear Activists' Adventures, 1969-1996, with Elisabeth King.

Records include correspondence, publications, flyers, notes, and other materials documenting the efforts …


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers at …


Evaluation Of Eu:Licaf For Neutron Detection Utilizing Sipms And Portable Electronics, Michael A. Ford, Buckley E. O'Day Iii, John W. Mcclory, Manish K. Sharma, Areg Danagoulian Nov 2018

Evaluation Of Eu:Licaf For Neutron Detection Utilizing Sipms And Portable Electronics, Michael A. Ford, Buckley E. O'Day Iii, John W. Mcclory, Manish K. Sharma, Areg Danagoulian

Faculty Publications

With the increasing cost and decreasing availability of 3He, there have been many efforts to find alternative neutron detection materials. Lithium calcium aluminum fluoride (LiCAF) enriched to 95% 6Li doped with europium was evaluated here as a replacement material for 3He. Wafers 0.5 cm thick, consisting of LiCAF crystals in a rubberized matrix, were embedded with wavelength shifting fibers (WSF) and mated to silicon photo-multipliers (SiPMs) to measure the photon response in a flux of neutrons from a DD neutron generator. Excellent discrimination was realized between neutrons and gammas, and both pulse-height discrimination and pulse-shape analysis were …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola May 2017

An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola

Electrical Engineering Theses

This thesis extends the prior work which produced an exact solution to the four-order acousto-optic (AO) Bragg cell with assumed fixed center frequency and with exact Bragg angle incident light. The extension predicts the model that incorporates the dependencies of both the input angle of light and the sound frequency. Specifically, a generalized 4th order linear differential equation (DE), is developed from a simultaneous analysis of four coupled AO system of DEs. Through standard methods, the characteristic roots, which requires solving a quartic equation, is produced. Subsequently, a derived system of homogeneous solutions, which absorbs the roots obtained using …


Nuclear Power: Black Sky Liability Or Black Sky Asset?, Sherrell R. Greene Dec 2016

Nuclear Power: Black Sky Liability Or Black Sky Asset?, Sherrell R. Greene

International Journal of Nuclear Security

Ready access to abundant electricity is a key enabler of modern life. During the past decade the vulnerability of Critical Infrastructure sectors in the U.S. to a variety of natural hazards and man-made threats has become increasingly apparent. The electrical infrastructure (the “Grid”) is the foundation for all other critical civil infrastructures upon which our society depends. Therefore, protection of the Grid is an energy security, homeland security, and national security issue of highest importance. Geomagnetic disturbances (GMD) induced by solar coronal mass ejections (CMEs), electromagnetic pulse (EMP) attacks, and cyber attacks are three events having the potential to plunge …


Development Of Instrumentation And Control Systems For An Integral Large Scale Pressurized Water Reactor, Matthew Rowland Morrow Lish Dec 2016

Development Of Instrumentation And Control Systems For An Integral Large Scale Pressurized Water Reactor, Matthew Rowland Morrow Lish

Doctoral Dissertations

Small and large scale integral light water reactors are being developed to supply electrical power and to meet the needs of process heat, primarily for water desalination. This dissertation research focuses on the instrumentation and control of a large integral inherently safe light water reactor (designated as I2S-LWR) which is being designed as part of a grant by the U.S. Department of Energy Integrated Research Project (IRP). This 969 MWe integral pressurized water reactor (PWR) incorporates as many passive safety features as possible while maintaining competitive costs with current light water reactors. In support of this work, the …


Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of …


Integrated Microsphere Whispering Gallery Mode Probe For Highly Sensitive Refractive Index Measurement, Hanzheng Wang, Lei Yuan, Cheol-Woon Kim, Jie Huang, Xinwei Lan, Hai Xiao Jun 2016

Integrated Microsphere Whispering Gallery Mode Probe For Highly Sensitive Refractive Index Measurement, Hanzheng Wang, Lei Yuan, Cheol-Woon Kim, Jie Huang, Xinwei Lan, Hai Xiao

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

We report an integrated whispering gallery mode microresonator-based sensor probe for refractive index sensing. The probe was made by sealing a borosilicate glass microsphere into a thin-wall glass capillary pigtailed with a multimode optical fiber. The intensities of the resonant peaks were found decreasing exponentially (linearly in a log scale) with the increasing refractive index of the medium surrounding the capillary. The sensing capability of the integrated probe was tested using sucrose solutions of different concentrations and the resolution was estimated to be about 2.5 x 10-5 in the index range of 1.3458 to 1.3847. The integrated sensor probe …


Adopting 3d Time-Of-Flight Sensing Technology For Design Information Verification In International Safeguards, Matthew Stephen Duchene May 2016

Adopting 3d Time-Of-Flight Sensing Technology For Design Information Verification In International Safeguards, Matthew Stephen Duchene

Doctoral Dissertations

International safeguards inspectors periodically perform examinations at sensitive nuclear facilities to verify that the facilities’ designs, layouts, and functions are identical to information declared to the International Atomic Energy Agency (IAEA). Such design information verification (DIV) relies on tools and techniques—such as 3D laser range-finding (3DLR) with light detection and ranging (LIDAR) instruments—that are resource intensive. This research explores 3D Time-of-Flight (TOF) sensors as a possible alternative technology to LIDAR systems for performing spatial change-detection to enhance the DIV process.

This research uses the Microsoft Kinect Version 2 (Kinect v2) camera system, one of several commercial depth-sensing instruments that is …


Mcnp6 Computational-Based Sensitivity Propagation Analysis Of Continuous Neutron Cross-Sections Using The Godiva (Hmf-001) And The Godiver (Hmf-004) Benchmark Criticality Study Cases, Lawrence James Lakeotes May 2016

Mcnp6 Computational-Based Sensitivity Propagation Analysis Of Continuous Neutron Cross-Sections Using The Godiva (Hmf-001) And The Godiver (Hmf-004) Benchmark Criticality Study Cases, Lawrence James Lakeotes

UNLV Theses, Dissertations, Professional Papers, and Capstones

There has been a reduction in funding for theoretical and applied research for improving the nation's database of continuous neutron cross-sections at BNL-NNDC. From 1940 through the late 1980s, research and applied development produced volumes of reliable neutron continuous cross-sections for many isotopes. Currently, the cross-section work has been mainly computational. The focus of this research is mainly centered on the requirements for improving thermal cross-sections to support reactor operations and fuel storage. The research efforts will also helpfully aid in the fast fission spectrum in order to support fast reactor designs for improving safety analysis and feedback coefficients.

This …


Neutron Radiation Effects On Ge And Gesn Semiconductors, Christopher T. O'Daniel Mar 2016

Neutron Radiation Effects On Ge And Gesn Semiconductors, Christopher T. O'Daniel

Theses and Dissertations

Two different semiconductor materials received neutron radiation for assessment of radiation damage. The two materials are undoped bulk Ge and epitaxial Ge0.991Sn0.009, which is doped heavily with phosphorous. At room temperature, the Ge sample has direct and indirect bandgaps at 0.78 eV and 0.66 eV, respectively. The Ge0.991Sn0.009 sample has direct and indirect bandgaps at 0.72 eV and 0.63 eV, respectively. Two samples of each material were exposed to research reactor neutrons, delivering a 1 MeV equivalent neutron fluence of 2.52 × 1015 n/cm2. In order to assess the radiation …


Temperature Dependence Of Electrical Performance Of Tritium Sourced Betavoltaic Cells, Darrell S. Cheu, Tom Adams, Shripad Revankar Aug 2015

Temperature Dependence Of Electrical Performance Of Tritium Sourced Betavoltaic Cells, Darrell S. Cheu, Tom Adams, Shripad Revankar

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is an increasing need for devices that can be powered for extended periods of time where it is impossible for maintenance or replacement, such as pacemakers, long term space flight or undisturbed sensors for military use. Since 1971, most devices run off a Lithium-Iodide battery, which gives a high amount of power but could only last approximately 2 to 5 years, requiring frequent replacement. However, replacement is unnecessary for betavoltaic cells as they can last at least 20 years. Commercially available tritium betavoltaic cells provided by City Labs Inc. were tested at a temperature range of -50°C to 150°C …


Computer Aided Diagnosis Of Oral Cancer: Using Time-Step Ct Images, Jonathan T. Scott Jan 2015

Computer Aided Diagnosis Of Oral Cancer: Using Time-Step Ct Images, Jonathan T. Scott

Masters Theses

"In medical imaging it is a very common practice to use a technique known as Time-Step imaging in patients who might develop cancer. Time-Step imaging it a very powerful technique, however it can lead to unmanageable amounts of image data. Previously the only way to search all of this data was to manually look through all of the files. This had to be done by trained professionals who knew what to look for within the images and make a judgment about the patient based on the images. This paper discusses the development of an algorithm to have a computer search …


Low Pressure Chemical Vapor Deposition Of Semiconducting Boron Carbide Thin Films On Silicon, Thomas Gregory Wulz May 2014

Low Pressure Chemical Vapor Deposition Of Semiconducting Boron Carbide Thin Films On Silicon, Thomas Gregory Wulz

Masters Theses

Boron carbide thin films were grown on the (100) plane of n-type silicon in a low pressure chemical vapor deposition (CVD) system from the thermal decomposition of boron trichloride and methane reactant gases with hydrogen as a carrier gas. Boron trichloride to methane molar ratio was 5, while the boron trichloride to hydrogen molar ratio was 3.5. Thin film deposition was carried out at 900 degrees Celsius at 25 Torr. The thin films were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDS), Laser Induced Breakdown Spectroscopy (LIBS), and current-voltage characteristics. The crystallography of …


Computational Modeling And Experimental Study On Optical Microresonators Using Optimal Spherical Structure For Chemical Sensing, Hanzheng Wang, Lei Yuan, Jie Huang, Xinwei Lan, Cheol-Woon Kim, Lan Jiang, Hai Xiao Sep 2013

Computational Modeling And Experimental Study On Optical Microresonators Using Optimal Spherical Structure For Chemical Sensing, Hanzheng Wang, Lei Yuan, Jie Huang, Xinwei Lan, Cheol-Woon Kim, Lan Jiang, Hai Xiao

Electrical and Computer Engineering Faculty Research & Creative Works

Chemical sensors based on optical microresonators have been demonstrated highly sensitive by monitoring the refractive index (RI) changes in the surrounding area near the resonator surface. In an optical resonator, the Whispering Gallery Modes (WGMs) with high quality (Q) factor supported by the spherical symmetric structure interacts with the contiguous background through evanescent field. Highly sensitive detection can be realized because of the long lifetime of the photons. The computational models of solid glass microspheres and hollow glass spheres with porous wall (PW-HGM) were established. These two types of microresonators were studied through simulations. The PWHGM resonator was proved as …


Fiber Pigtailed Thin Wall Capillary Coupler For Excitation Of Microsphere Wgm Resonator, Haining Wang, Xinwei Lan, Jie Huang, Lei Yuan, Cheol-Woon Kim, Hai Xiao Jul 2013

Fiber Pigtailed Thin Wall Capillary Coupler For Excitation Of Microsphere Wgm Resonator, Haining Wang, Xinwei Lan, Jie Huang, Lei Yuan, Cheol-Woon Kim, Hai Xiao

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 x 104 was observed using a borosilicate glass microsphere with a diameter of 71 µm. The …


Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof Apr 2013

Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof

Radhey Shyam Meena

World cannot be imagined without electrical power. Generally the power is transmitted through transmission networks. This paper describes an original idea to eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronic devices capable of charging themselves without ever being plugged in freeing us from that final ubiquitous power wire. This paper includes the techniques of transmitting power without using wires with an efficiency of about 95% with non-radioactivemethods. In this paper …